BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32006407)

  • 1. Harnessing the Antiviral-Type Responses Induced by Immunostimulatory siRNAs for Cancer Immunotherapy.
    Iversen PO; Sioud M
    Methods Mol Biol; 2020; 2115():281-287. PubMed ID: 32006407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antigen presentation by dendritic cells and their significance in antineoplastic immunotherapy.
    Bodey B; Siegel SE; Kaiser HE
    In Vivo; 2004; 18(1):81-100. PubMed ID: 15011756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotypic profile of dendritic and T cells in the lymph node of Balb/C mice with breast cancer submitted to dendritic cells immunotherapy.
    da Cunha A; Antoniazi Michelin M; Cândido Murta EF
    Immunol Lett; 2016 Sep; 177():25-37. PubMed ID: 27423825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering therapeutic cancer vaccines that activate antitumor immunity.
    Iversen PO; Sioud M
    Methods Mol Biol; 2015; 1218():263-8. PubMed ID: 25319656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering better immunotherapies via RNA interference.
    Sioud M
    Hum Vaccin Immunother; 2014; 10(11):3165-74. PubMed ID: 25483669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dendritic cells pulsed or fused with AML cellular antigen provide comparable in vivo antitumor protective responses.
    Weigel BJ; Panoskaltsis-Mortari A; Diers M; Garcia M; Lees C; Krieg AM; Chen W; Blazar BR
    Exp Hematol; 2006 Oct; 34(10):1403-12. PubMed ID: 16982333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dendritic cell gene therapy.
    Onaitis M; Kalady MF; Pruitt S; Tyler DS
    Surg Oncol Clin N Am; 2002 Jul; 11(3):645-60. PubMed ID: 12487060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dendritic cells and the control of immunity: enhancing the efficiency of antigen presentation.
    Steinman RM
    Mt Sinai J Med; 2001 May; 68(3):160-6. PubMed ID: 11373688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dendritic cell vaccines in acute leukaemia.
    Duncan C; Roddie H
    Best Pract Res Clin Haematol; 2008 Sep; 21(3):521-41. PubMed ID: 18790453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of fully activated dendritic cells capable of priming tumor-specific cytotoxic T lymphocytes in patients with metastatic cancer using penicillin-killed streptococcus pyogenes (OK432) and anti-CD40 antibody.
    Kontani K; Teramoto K; Ozaki Y; Sawai S; Tezuka N; Ishida H; Kajino K; Fujino S; Yamauchi A; Taguchi O; Kannagi R; Yokomise H; Ogasawara K
    Oncol Rep; 2007 Apr; 17(4):895-902. PubMed ID: 17342333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current progress in the development of a cell-based vaccine for the immunotherapy of acute myeloid leukemia.
    Klammer M; Roddie PH
    Expert Rev Vaccines; 2006 Apr; 5(2):211-22. PubMed ID: 16608421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative expression of Toll-like receptor-2, -4, and -9 in dendritic cells generated from blasts of patients with acute myeloid leukemia.
    Schmitt A; Li L; Giannopoulos K; Greiner J; Reinhardt P; Wiesneth M; Schmitt M
    Transfusion; 2008 May; 48(5):861-70. PubMed ID: 18208411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies.
    Klippstein R; Pozo D
    Nanomedicine; 2010 Aug; 6(4):523-9. PubMed ID: 20085824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precision cancer immunotherapy: optimizing dendritic cell-based strategies to induce tumor antigen-specific T-cell responses against individual patient tumors.
    Osada T; Nagaoka K; Takahara M; Yang XY; Liu CX; Guo H; Roy Choudhury K; Hobeika A; Hartman Z; Morse MA; Lyerly HK
    J Immunother; 2015 May; 38(4):155-64. PubMed ID: 25839441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunosuppressive factor blockade in dendritic cells via siRNAs results in objective clinical responses.
    Sioud M; Mobergslien A; Sæbøe-Larssen S
    Methods Mol Biol; 2015; 1218():269-76. PubMed ID: 25319657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinically feasible approaches to potentiating cancer cell-based immunotherapies.
    Seledtsov VI; Goncharov AG; Seledtsova GV
    Hum Vaccin Immunother; 2015; 11(4):851-69. PubMed ID: 25933181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blockage of immune checkpoint molecules increases T-cell priming potential of dendritic cell vaccine.
    Hassannia H; Ghasemi Chaleshtari M; Atyabi F; Nosouhian M; Masjedi A; Hojjat-Farsangi M; Namdar A; Azizi G; Mohammadi H; Ghalamfarsa G; Sabz G; Hasanzadeh S; Yousefi M; Jadidi-Niaragh F
    Immunology; 2020 Jan; 159(1):75-87. PubMed ID: 31587253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sialic acid removal from dendritic cells improves antigen cross-presentation and boosts anti-tumor immune responses.
    Silva M; Silva Z; Marques G; Ferro T; Gonçalves M; Monteiro M; van Vliet SJ; Mohr E; Lino AC; Fernandes AR; Lima FA; van Kooyk Y; Matos T; Tadokoro CE; Videira PA
    Oncotarget; 2016 Jul; 7(27):41053-41066. PubMed ID: 27203391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune responses and long-term disease recurrence status after telomerase-based dendritic cell immunotherapy in patients with acute myeloid leukemia.
    Khoury HJ; Collins RH; Blum W; Stiff PS; Elias L; Lebkowski JS; Reddy A; Nishimoto KP; Sen D; Wirth ED; Case CC; DiPersio JF
    Cancer; 2017 Aug; 123(16):3061-3072. PubMed ID: 28411378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendritic cell-based immunotherapy in myeloid leukaemia: translating fundamental mechanisms into clinical applications.
    van de Loosdrecht AA; van den Ancker W; Houtenbos I; Ossenkoppele GJ; Westers TM
    Handb Exp Pharmacol; 2009; (188):319-48. PubMed ID: 19031033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.