These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
371 related articles for article (PubMed ID: 32006569)
1. Cyclin D degradation by E3 ligases in cancer progression and treatment. Qie S; Diehl JA Semin Cancer Biol; 2020 Dec; 67(Pt 2):159-170. PubMed ID: 32006569 [TBL] [Abstract][Full Text] [Related]
2. SCF(Fbx4/alphaB-crystallin) E3 ligase: when one is not enough. Barbash O; Diehl JA Cell Cycle; 2008 Oct; 7(19):2983-6. PubMed ID: 18818515 [TBL] [Abstract][Full Text] [Related]
3. Cyclin F/FBXO1 Interacts with HIV-1 Viral Infectivity Factor (Vif) and Restricts Progeny Virion Infectivity by Ubiquitination and Proteasomal Degradation of Vif Protein through SCF Augustine T; Chaudhary P; Gupta K; Islam S; Ghosh P; Santra MK; Mitra D J Biol Chem; 2017 Mar; 292(13):5349-5363. PubMed ID: 28184007 [TBL] [Abstract][Full Text] [Related]
5. A novel mechanism by which thiazolidinediones facilitate the proteasomal degradation of cyclin D1 in cancer cells. Wei S; Yang HC; Chuang HC; Yang J; Kulp SK; Lu PJ; Lai MD; Chen CS J Biol Chem; 2008 Sep; 283(39):26759-70. PubMed ID: 18650423 [TBL] [Abstract][Full Text] [Related]
6. Multiple cullin-associated E3 ligases regulate cyclin D1 protein stability. Lu K; Zhang M; Wei G; Xiao G; Tong L; Chen D Elife; 2023 Nov; 12():. PubMed ID: 37943017 [TBL] [Abstract][Full Text] [Related]
7. Regulation of GATA-binding protein 2 levels via ubiquitin-dependent degradation by Fbw7: involvement of cyclin B-cyclin-dependent kinase 1-mediated phosphorylation of THR176 in GATA-binding protein 2. Nakajima T; Kitagawa K; Ohhata T; Sakai S; Uchida C; Shibata K; Minegishi N; Yumimoto K; Nakayama KI; Masumoto K; Katou F; Niida H; Kitagawa M J Biol Chem; 2015 Apr; 290(16):10368-81. PubMed ID: 25670854 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity. Khleif SN; DeGregori J; Yee CL; Otterson GA; Kaye FJ; Nevins JR; Howley PM Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4350-4. PubMed ID: 8633069 [TBL] [Abstract][Full Text] [Related]
9. Effect of ursolic acid on MAPK in cyclin D1 signaling and RING-type E3 ligase (SCF E3s) in two endometrial cancer cell lines. Achiwa Y; Hasegawa K; Udagawa Y Nutr Cancer; 2013; 65(7):1026-33. PubMed ID: 24083669 [TBL] [Abstract][Full Text] [Related]
10. Expression of cyclin E renders cyclin D-CDK4 dispensable for inactivation of the retinoblastoma tumor suppressor protein, activation of E2F, and G1-S phase progression. Keenan SM; Lents NH; Baldassare JJ J Biol Chem; 2004 Feb; 279(7):5387-96. PubMed ID: 14645251 [TBL] [Abstract][Full Text] [Related]
11. Casein kinase II phosphorylation of cyclin F at serine 621 regulates the Lys48-ubiquitylation E3 ligase activity of the SCF Lee A; Rayner SL; De Luca A; Gwee SSL; Morsch M; Sundaramoorthy V; Shahheydari H; Ragagnin A; Shi B; Yang S; Williams KL; Don EK; Walker AK; Zhang KY; Yerbury JJ; Cole NJ; Atkin JD; Blair IP; Molloy MP; Chung RS Open Biol; 2017 Oct; 7(10):. PubMed ID: 29021214 [TBL] [Abstract][Full Text] [Related]
12. Cyclin F: A component of an E3 ubiquitin ligase complex with roles in neurodegeneration and cancer. Galper J; Rayner SL; Hogan AL; Fifita JA; Lee A; Chung RS; Blair IP; Yang S Int J Biochem Cell Biol; 2017 Aug; 89():216-220. PubMed ID: 28652210 [TBL] [Abstract][Full Text] [Related]
13. The AMBRA1 E3 ligase adaptor regulates the stability of cyclin D. Chaikovsky AC; Li C; Jeng EE; Loebell S; Lee MC; Murray CW; Cheng R; Demeter J; Swaney DL; Chen SH; Newton BW; Johnson JR; Drainas AP; Shue YT; Seoane JA; Srinivasan P; He A; Yoshida A; Hipkins SQ; McCrea E; Poltorack CD; Krogan NJ; Diehl JA; Kong C; Jackson PK; Curtis C; Petrov DA; Bassik MC; Winslow MM; Sage J Nature; 2021 Apr; 592(7856):794-798. PubMed ID: 33854239 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Diehl JA; Zindy F; Sherr CJ Genes Dev; 1997 Apr; 11(8):957-72. PubMed ID: 9136925 [TBL] [Abstract][Full Text] [Related]
15. The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. Zou T; Lin Z Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072267 [TBL] [Abstract][Full Text] [Related]
16. Insights into the aberrant CDK4/6 signaling pathway as a therapeutic target in tumorigenesis. Rezaeian AH; Inuzuka H; Wei W Adv Protein Chem Struct Biol; 2023; 135():179-201. PubMed ID: 37061331 [TBL] [Abstract][Full Text] [Related]
17. The Pezcoller lecture: cancer cell cycles revisited. Sherr CJ Cancer Res; 2000 Jul; 60(14):3689-95. PubMed ID: 10919634 [TBL] [Abstract][Full Text] [Related]
18. A requirement for cyclin D3-cyclin-dependent kinase (cdk)-4 assembly in the cyclic adenosine monophosphate-dependent proliferation of thyrocytes. Depoortere F; Van Keymeulen A; Lukas J; Costagliola S; Bartkova J; Dumont JE; Bartek J; Roger PP; Dremier S J Cell Biol; 1998 Mar; 140(6):1427-39. PubMed ID: 9508775 [TBL] [Abstract][Full Text] [Related]
19. The SCF-type E3 Ubiquitin Ligases as Cancer Targets. Kitagawa K; Kitagawa M Curr Cancer Drug Targets; 2016; 16(2):119-29. PubMed ID: 26560120 [TBL] [Abstract][Full Text] [Related]
20. The Long-Lost Ligase: CRL4 Chaikovsky AC; Sage J; Pagano M; Simoneschi D DNA Cell Biol; 2021 Dec; 40(12):1457-1461. PubMed ID: 34495753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]