BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 32006629)

  • 1. High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration.
    Huang S; Geng A
    J Biotechnol; 2020 Feb; 310():13-20. PubMed ID: 32006629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae.
    Shi S; Liang Y; Zhang MM; Ang EL; Zhao H
    Metab Eng; 2016 Jan; 33():19-27. PubMed ID: 26546089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of 2,3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid
    Lee YG; Seo JH
    Biotechnol Biofuels; 2019; 12():204. PubMed ID: 31485270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor.
    Yamada R; Nishikawa R; Wakita K; Ogino H
    J Ind Microbiol Biotechnol; 2018 May; 45(5):305-311. PubMed ID: 29605870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.
    Lian J; Chao R; Zhao H
    Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas9 mediated engineering of Bacillus licheniformis for industrial production of (2R,3S)-butanediol.
    Song CW; Rathnasingh C; Park JM; Kwon M; Song H
    Biotechnol Prog; 2021 Jan; 37(1):e3072. PubMed ID: 32964665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas9 Genome Engineering in Saccharomyces cerevisiae Cells.
    Ryan OW; Poddar S; Cate JH
    Cold Spring Harb Protoc; 2016 Jun; 2016(6):. PubMed ID: 27250940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of 2,3-butanediol tolerance in Saccharomyces cerevisiae by using a novel mutagenesis strategy.
    Mizobata A; Mitsui R; Yamada R; Matsumoto T; Yoshihara S; Tokumoto H; Ogino H
    J Biosci Bioeng; 2021 Mar; 131(3):283-289. PubMed ID: 33277188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae.
    Nan H; Seo SO; Oh EJ; Seo JH; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5757-64. PubMed ID: 24743979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae.
    Jakočiūnas T; Bonde I; Herrgård M; Harrison SJ; Kristensen M; Pedersen LE; Jensen MK; Keasling JD
    Metab Eng; 2015 Mar; 28():213-222. PubMed ID: 25638686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial metabolic pathway assembly in the yeast genome with RNA-guided Cas9.
    EauClaire SF; Zhang J; Rivera CG; Huang LL
    J Ind Microbiol Biotechnol; 2016 Jul; 43(7):1001-15. PubMed ID: 27138038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 mediated gene deletions in lager yeast Saccharomyces pastorianus.
    Gorter de Vries AR; de Groot PA; van den Broek M; Daran JG
    Microb Cell Fact; 2017 Dec; 16(1):222. PubMed ID: 29207996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantiopure meso-2,3-butanediol production by metabolically engineered Saccharomyces cerevisiae expressing 2,3-butanediol dehydrogenase from Klebsiella oxytoca.
    Lee YG; Bae JM; Kim SJ
    J Biotechnol; 2022 Aug; 354():1-9. PubMed ID: 35644291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Saccharomyces cerevisiae using the CRISPR/Cas9 system to minimize ethyl carbamate accumulation during Chinese rice wine fermentation.
    Wu D; Xie W; Li X; Cai G; Lu J; Xie G
    Appl Microbiol Biotechnol; 2020 May; 104(10):4435-4444. PubMed ID: 32215703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.
    Wu MY; Sung LY; Li H; Huang CH; Hu YC
    ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexed CRISPR-Cas9-Based Genome Editing of
    Otoupal PB; Ito M; Arkin AP; Magnuson JK; Gladden JM; Skerker JM
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30894433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas12a Multiplex Genome Editing of Saccharomyces cerevisiae and the Creation of Yeast Pixel Art.
    Ciurkot K; Vonk B; Gorochowski TE; Roubos JA; Verwaal R
    J Vis Exp; 2019 May; (147):. PubMed ID: 31205318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delta Integration CRISPR-Cas (Di-CRISPR) in Saccharomyces cerevisiae.
    Shi S; Liang Y; Ang EL; Zhao H
    Methods Mol Biol; 2019; 1927():73-91. PubMed ID: 30788786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae.
    Chin YW; Kang WK; Jang HW; Turner TL; Kim HJ
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1517-1525. PubMed ID: 27573438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.