These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 320067)

  • 21. The effect of guanylyl-5'-methylene diphosphonate on binding of aminoacyl-transfer ribonucleic acid to ribosomes.
    Shorey RL; Ravel JM; Shive W
    Arch Biochem Biophys; 1971 Sep; 146(1):110-7. PubMed ID: 4947260
    [No Abstract]   [Full Text] [Related]  

  • 22. The synthesis of RNA containing polyadenylic acid sequences in preimplantation mouse embryos.
    Warner CM; Hearn TF
    J Reprod Fertil; 1977 Jul; 50(2):315-7. PubMed ID: 560477
    [No Abstract]   [Full Text] [Related]  

  • 23. Mechanism of the in vitro breakdown of guanosine 5'-diphosphate 3'-diphosphate in Escherichia coli.
    Heinemeyer EA; Richter D
    Proc Natl Acad Sci U S A; 1978 Sep; 75(9):4180-3. PubMed ID: 212739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Guanosine tetra- and pentaphosphate synthesis by bacterial stringent factor and eukaryotic ribosomes.
    Pollard JW; Parker J
    Nature; 1977 May; 267(5609):371-3. PubMed ID: 194166
    [No Abstract]   [Full Text] [Related]  

  • 25. In vitro degradation of guanosine 5'-diphosphate, 3'-diphosphate.
    Sy J
    Proc Natl Acad Sci U S A; 1977 Dec; 74(12):5529-33. PubMed ID: 414222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA synthesis and the accumulation of guanine nucleotides during growth shift down in the blue-green alga Anacystis nidulans.
    Mann N; Carr NG; Midgley JE
    Biochim Biophys Acta; 1975 Aug; 402(1):41-50. PubMed ID: 808240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Replacement of pseudouridine in transfer RNA by 5-fluorouridine does not affect the ability to stimulate the synthesis of guanosine 5'-triphosphate 3'-diphosphate.
    Chinali G; Horowitz J; Ofengand J
    Biochemistry; 1978 Jul; 17(14):2755-60. PubMed ID: 356873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Demonstration of a guanosine triphosphate-dependent enzymatic binding of aminoacyl-ribonucleic acid to Escherichia coli ribosomes.
    Ravel JM
    Proc Natl Acad Sci U S A; 1967 Jun; 57(6):1811-6. PubMed ID: 5340636
    [No Abstract]   [Full Text] [Related]  

  • 29. Studies on the in vitro synthesis of ppGpp and pppGpp.
    Beres L; Lucas-Lenard J
    Biochim Biophys Acta; 1975 Jun; 395(1):80-90. PubMed ID: 806304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of guanosine 5'-diphosphate, 2'-(or 3'-) diphosphate and related nucleotides in a variety of physiological conditions.
    Edlin G; Donini P
    J Biol Chem; 1971 Jul; 246(13):4371-3. PubMed ID: 4932979
    [No Abstract]   [Full Text] [Related]  

  • 31. Quantitative changes in total RNA, total poly(A), and ribosomes in early mouse embryos.
    Pikó L; Clegg KB
    Dev Biol; 1982 Feb; 89(2):362-78. PubMed ID: 6173273
    [No Abstract]   [Full Text] [Related]  

  • 32. Formation of guanosine tetraphosphate (magic spot I) in homologous and heterologous systems.
    Richter D
    FEBS Lett; 1973 Aug; 34(2):291-4. PubMed ID: 4355915
    [No Abstract]   [Full Text] [Related]  

  • 33. Free 3'-OH group of the terminal adenosine of the tRNA molecule is essential for the synthesis in vitro of guanosine tetraphosphate and pentaphosphate in a ribosomal system from Escherichia coli.
    Sprinzl M; Richter D
    Eur J Biochem; 1976 Dec; 71(1):171-6. PubMed ID: 795660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanism of action of inititation factor F1 from Escherichia coli.
    Benne R; Arentzen R; Voorma HO
    Biochim Biophys Acta; 1972 May; 269(2):304-10. PubMed ID: 4555256
    [No Abstract]   [Full Text] [Related]  

  • 35. Detection of guanosine-nucleotide.elongation-factor-G complexes produced during the decay of guanosine-nucleotide.elongation-factor-G.Ribosome complexes.
    Girbes T; Vázquez D; Modolell J
    Eur J Biochem; 1977 Dec; 81(3):473-81. PubMed ID: 340226
    [No Abstract]   [Full Text] [Related]  

  • 36. Further studies on the role of factors Ts and Tu in protein synthesis.
    Weissbach H; Redfield B; Brot N
    Arch Biochem Biophys; 1971 May; 144(1):224-9. PubMed ID: 4940600
    [No Abstract]   [Full Text] [Related]  

  • 37. MSI and MSII made on ribosome in idling step of protein synthesis.
    Haseltine WA; Block R; Gilbert W; Weber K
    Nature; 1972 Aug; 238(5364):381-4. PubMed ID: 4559580
    [No Abstract]   [Full Text] [Related]  

  • 38. Catalysis of peptide bond formation by 50 S ribosomal subunits from Escherichia coli.
    Monro RE
    J Mol Biol; 1967 May; 26(1):147-51. PubMed ID: 5341411
    [No Abstract]   [Full Text] [Related]  

  • 39. A new relaxed mutant of Escherichia coli with an altered 50S ribosomal subunit.
    Friesen JD; Fiil NP; Parker JM; Haseltine WA
    Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3465-9. PubMed ID: 4610577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The interaction of elongation factor 2 with ribosomes from silk gland. Formation of an EF-2-ribosome-GDP complex.
    Taira H; Ejiri S; Shimura K
    J Biochem; 1974 Nov; 76(5):949-57. PubMed ID: 4616032
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.