These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32006777)

  • 1. A spatially explicit analysis of wheat and maize yield sensitivity to changing groundwater levels in Hungary, 1961-2010.
    Pinke Z; Decsi B; Kozma Z; Vári Á; Lövei GL
    Sci Total Environ; 2020 May; 715():136555. PubMed ID: 32006777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the impacts of agricultural drought (SPI/SPEI) on maize and wheat yields across Hungary.
    Mohammed S; Alsafadi K; Enaruvbe GO; Bashir B; Elbeltagi A; Széles A; Alsalman A; Harsanyi E
    Sci Rep; 2022 May; 12(1):8838. PubMed ID: 35614172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crop production response to soil moisture and groundwater depletion in the Nile Basin based on multi-source data.
    Nigatu ZM; Fan D; You W; Melesse AM; Pu L; Yang X; Wan X; Jiang Z
    Sci Total Environ; 2022 Jun; 825():154007. PubMed ID: 35192825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO
    Wang Y; Yang P; Ren S; He X; Wei C; Wang S; Xu Y; Xu Z; Zhang Y; Ismail H
    Int J Environ Res Public Health; 2019 Jul; 16(15):. PubMed ID: 31349697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dataset on the global distribution of shallow groundwater.
    Soylu ME; Bras RL
    Data Brief; 2023 Apr; 47():108973. PubMed ID: 36875209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change].
    Wang XY; Yang XG; Sun S; Xie WJ
    Ying Yong Sheng Tai Xue Bao; 2015 Oct; 26(10):3091-102. PubMed ID: 26995918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing temperature cuts back crop yields in Hungary over the last 90 years.
    Pinke Z; Lövei GL
    Glob Chang Biol; 2017 Dec; 23(12):5426-5435. PubMed ID: 28699259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing genotype-environment-management interactions to enhance productivity and eco-efficiency for wheat-maize rotation in the North China Plain.
    Xin Y; Tao F
    Sci Total Environ; 2019 Mar; 654():480-492. PubMed ID: 30447587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction and evaluation of groundwater level changes in an over-exploited area of the Baiyangdian Lake Basin, China under the combined influence of climate change and ecological water recharge.
    Chi G; Su X; Lyu H; Li H; Xu G; Zhang Y
    Environ Res; 2022 Sep; 212(Pt A):113104. PubMed ID: 35381262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Climatic potential productivity of winter wheat and summer maize in Huanghuaihai Plain in 2011-2050].
    Zhao JF; Guo JP; Wu DR; Fang SB; E YH
    Ying Yong Sheng Tai Xue Bao; 2011 Dec; 22(12):3189-95. PubMed ID: 22384586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. India's Groundwater Storage Trends Influenced by Tube Well Intensification.
    Chinnasamy P; Agoramoorthy G
    Ground Water; 2016 Sep; 54(5):727-732. PubMed ID: 26910508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diverging importance of drought stress for maize and winter wheat in Europe.
    Webber H; Ewert F; Olesen JE; Müller C; Fronzek S; Ruane AC; Bourgault M; Martre P; Ababaei B; Bindi M; Ferrise R; Finger R; Fodor N; Gabaldón-Leal C; Gaiser T; Jabloun M; Kersebaum KC; Lizaso JI; Lorite IJ; Manceau L; Moriondo M; Nendel C; Rodríguez A; Ruiz-Ramos M; Semenov MA; Siebert S; Stella T; Stratonovitch P; Trombi G; Wallach D
    Nat Commun; 2018 Oct; 9(1):4249. PubMed ID: 30315168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncertainties of potentials and recent changes in global yields of major crops resulting from census- and satellite-based yield datasets at multiple resolutions.
    Iizumi T; Kotoku M; Kim W; West PC; Gerber JS; Brown ME
    PLoS One; 2018; 13(9):e0203809. PubMed ID: 30235237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatio-temporal effect of climate change on water balance and interactions between groundwater and surface water in plains.
    Guevara-Ochoa C; Medina-Sierra A; Vives L
    Sci Total Environ; 2020 Jun; 722():137886. PubMed ID: 32208258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat.
    Zhang T; Lin X; Sassenrath GF
    Sci Total Environ; 2015 Mar; 508():331-42. PubMed ID: 25497355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of groundwater pesticide exposure modeling scenarios for vulnerable spring and winter wheat-growing areas.
    Padilla L; Winchell M; Peranginangin N; Grant S
    Integr Environ Assess Manag; 2017 Nov; 13(6):992-1006. PubMed ID: 28266137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate variation explains a third of global crop yield variability.
    Ray DK; Gerber JS; MacDonald GK; West PC
    Nat Commun; 2015 Jan; 6():5989. PubMed ID: 25609225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation to assess potential groundwater recharge and net groundwater use in a semi-arid region.
    Dash CJ; Sarangi A; Singh DK; Adhikary PP
    Environ Monit Assess; 2019 May; 191(6):371. PubMed ID: 31102073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest.
    Liu L; Basso B
    PLoS One; 2020; 15(1):e0225433. PubMed ID: 31990907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution crop yield and water productivity dataset generated using random forest and remote sensing.
    Cheng M; Jiao X; Shi L; Penuelas J; Kumar L; Nie C; Wu T; Liu K; Wu W; Jin X
    Sci Data; 2022 Oct; 9(1):641. PubMed ID: 36271097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.