These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Peripheral membrane proteins: Tying the knot between experiment and computation. Monje-Galvan V; Klauda JB Biochim Biophys Acta; 2016 Jul; 1858(7 Pt B):1584-93. PubMed ID: 26903211 [TBL] [Abstract][Full Text] [Related]
6. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Grassmann G; Miotto M; Desantis F; Di Rienzo L; Tartaglia GG; Pastore A; Ruocco G; Monti M; Milanetti E Chem Rev; 2024 Apr; 124(7):3932-3977. PubMed ID: 38535831 [TBL] [Abstract][Full Text] [Related]
7. Molecular dynamics simulation of membrane proteins. Weng J; Wang W Adv Exp Med Biol; 2014; 805():305-29. PubMed ID: 24446367 [TBL] [Abstract][Full Text] [Related]
8. Understanding and modelling the interactions of peptides with membranes: from partitioning to self-assembly. Chen CH; Melo MC; Berglund N; Khan A; de la Fuente-Nunez C; Ulmschneider JP; Ulmschneider MB Curr Opin Struct Biol; 2020 Apr; 61():160-166. PubMed ID: 32006812 [TBL] [Abstract][Full Text] [Related]
9. Clustering and dynamics of crowded proteins near membranes and their influence on membrane bending. Nawrocki G; Im W; Sugita Y; Feig M Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24562-24567. PubMed ID: 31740611 [TBL] [Abstract][Full Text] [Related]
10. Biomolecular simulation: a computational microscope for molecular biology. Dror RO; Dirks RM; Grossman JP; Xu H; Shaw DE Annu Rev Biophys; 2012; 41():429-52. PubMed ID: 22577825 [TBL] [Abstract][Full Text] [Related]
11. Exploring the property space of periodic cellular structures based on crystal networks. Lumpe TS; Stankovic T Proc Natl Acad Sci U S A; 2021 Feb; 118(7):. PubMed ID: 33558225 [TBL] [Abstract][Full Text] [Related]
12. Optimized OPEP Force Field for Simulation of Crowded Protein Solutions. Timr S; Melchionna S; Derreumaux P; Sterpone F J Phys Chem B; 2023 Apr; 127(16):3616-3623. PubMed ID: 37071827 [TBL] [Abstract][Full Text] [Related]
14. Computational studies of membrane proteins: from sequence to structure to simulation. Stansfeld PJ Curr Opin Struct Biol; 2017 Aug; 45():133-141. PubMed ID: 28511148 [TBL] [Abstract][Full Text] [Related]
15. Weighing-up protein dynamics: the combination of native mass spectrometry and molecular dynamics simulations. Marklund EG; Benesch JL Curr Opin Struct Biol; 2019 Feb; 54():50-58. PubMed ID: 30743182 [TBL] [Abstract][Full Text] [Related]
16. Atomistic Simulations of Electroporation of Model Cell Membranes. Tarek M Adv Anat Embryol Cell Biol; 2017; 227():1-15. PubMed ID: 28980037 [TBL] [Abstract][Full Text] [Related]
17. Role of charged lipids in membrane structures - Insight given by simulations. Pöyry S; Vattulainen I Biochim Biophys Acta; 2016 Oct; 1858(10):2322-2333. PubMed ID: 27003126 [TBL] [Abstract][Full Text] [Related]
18. Lipids on the move: simulations of membrane pores, domains, stalks and curves. Marrink SJ; de Vries AH; Tieleman DP Biochim Biophys Acta; 2009 Jan; 1788(1):149-68. PubMed ID: 19013128 [TBL] [Abstract][Full Text] [Related]
19. Interplay between lipid lateral diffusion, dye concentration and membrane permeability unveiled by a combined spectroscopic and computational study of a model lipid bilayer. Jan Akhunzada M; D'Autilia F; Chandramouli B; Bhattacharjee N; Catte A; Di Rienzo R; Cardarelli F; Brancato G Sci Rep; 2019 Feb; 9(1):1508. PubMed ID: 30728410 [TBL] [Abstract][Full Text] [Related]
20. Membrane binding and subcellular targeting of C2 domains. Cho W; Stahelin RV Biochim Biophys Acta; 2006 Aug; 1761(8):838-49. PubMed ID: 16945584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]