These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 32006844)

  • 41. Z-Scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now?
    Zhang W; Mohamed AR; Ong WJ
    Angew Chem Int Ed Engl; 2020 Dec; 59(51):22894-22915. PubMed ID: 32009290
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recent Advances in Semiconductor-Graphene and Semiconductor-Ferroelectric/Ferromagnetic Nanoheterostructures for Efficient Hydrogen Generation and Environmental Remediation.
    Singh S; Faraz M; Khare N
    ACS Omega; 2020 Jun; 5(21):11874-11882. PubMed ID: 32548366
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Highly efficient visible-light photoactivity of Z-scheme MoS
    Fu S; Yuan W; Yan Y; Liu H; Shi X; Zhao F; Zhou J
    J Environ Manage; 2019 Dec; 252():109654. PubMed ID: 31600686
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photocatalytic and Photoelectrochemical Systems: Similarities and Differences.
    Wu H; Tan HL; Toe CY; Scott J; Wang L; Amal R; Ng YH
    Adv Mater; 2020 May; 32(18):e1904717. PubMed ID: 31814196
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ag
    Zhao X; Zhang Y; Zhao Y; Tan H; Zhao Z; Shi H; Wang E; Li Y
    Dalton Trans; 2019 May; 48(19):6484-6491. PubMed ID: 30994131
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular Catalysts Immobilized on Semiconductor Photosensitizers for Proton Reduction toward Visible-Light-Driven Overall Water Splitting.
    Morikawa T; Sato S; Sekizawa K; Arai T; Suzuki TM
    ChemSusChem; 2019 May; 12(9):1807-1824. PubMed ID: 30963707
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design of Single-Site Photocatalysts by Using Metal-Organic Frameworks as a Matrix.
    Wen M; Mori K; Kuwahara Y; An T; Yamashita H
    Chem Asian J; 2018 May; ():. PubMed ID: 29756680
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Semiconductor Nanomaterial Photocatalysts for Water-Splitting Hydrogen Production: The Holy Grail of Converting Solar Energy to Fuel.
    Mohsin M; Ishaq T; Bhatti IA; Maryam ; Jilani A; Melaibari AA; Abu-Hamdeh NH
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770508
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent progress in semiconductor/graphene photocatalysts: synthesis, photocatalytic applications, and challenges.
    Ahmed MA; Mohamed AA
    RSC Adv; 2022 Dec; 13(1):421-439. PubMed ID: 36605650
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sustainable hydrogen production for the greener environment by quantum dots-based efficient photocatalysts: A review.
    Rao VN; Reddy NL; Kumari MM; Cheralathan KK; Ravi P; Sathish M; Neppolian B; Reddy KR; Shetti NP; Prathap P; Aminabhavi TM; Shankar MV
    J Environ Manage; 2019 Oct; 248():109246. PubMed ID: 31323456
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Graphene-based semiconductor photocatalysts.
    Xiang Q; Yu J; Jaroniec M
    Chem Soc Rev; 2012 Jan; 41(2):782-96. PubMed ID: 21853184
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Facile synthesis of CdS/Bi
    Lv T; Li D; Hong Y; Luo B; Xu D; Chen M; Shi W
    Dalton Trans; 2017 Sep; 46(37):12675-12682. PubMed ID: 28914294
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Semiconductor Photocatalysis for Chemoselective Radical Coupling Reactions.
    Kisch H
    Acc Chem Res; 2017 Apr; 50(4):1002-1010. PubMed ID: 28378591
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications.
    Ahmad I; Zou Y; Yan J; Liu Y; Shukrullah S; Naz MY; Hussain H; Khan WQ; Khalid NR
    Adv Colloid Interface Sci; 2023 Jan; 311():102830. PubMed ID: 36592501
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Critical Aspects of Metal-Organic Framework-Based Materials for Solar-Driven CO
    He Y; Li C; Chen XB; Rao H; Shi Z; Feng S
    Glob Chall; 2021 Feb; 5(2):2000082. PubMed ID: 33552555
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Photocatalytic Micro/Nanomotors: From Construction to Applications.
    Dong R; Cai Y; Yang Y; Gao W; Ren B
    Acc Chem Res; 2018 Sep; 51(9):1940-1947. PubMed ID: 30152999
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbon-Based Nanomaterials via Heterojunction Serving as Photocatalyst.
    Syed N; Huang J; Feng Y; Wang X; Cao L
    Front Chem; 2019; 7():713. PubMed ID: 31709236
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carbon nitride-based Z-scheme heterojunctions for solar-driven advanced oxidation processes.
    Lin J; Tian W; Zhang H; Duan X; Sun H; Wang H; Fang Y; Huang Y; Wang S
    J Hazard Mater; 2022 Jul; 434():128866. PubMed ID: 35413519
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bifunctional Ag-Decorated CeO
    Liu J; Zhang L; Sun Y; Luo Y
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33923342
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment.
    Zhang X; Wang J; Dong XX; Lv YK
    Chemosphere; 2020 Mar; 242():125144. PubMed ID: 31669994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.