BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32006850)

  • 1. Kinetics and mechanism of thiamethoxam abatement by ozonation and ozone-based advanced oxidation processes.
    Wang H; Zhan J; Gao L; Yu G; Komarneni S; Wang Y
    J Hazard Mater; 2020 May; 390():122180. PubMed ID: 32006850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pilot-scale evaluation of micropollutant abatements by conventional ozonation, UV/O
    Yao W; Ur Rehman SW; Wang H; Yang H; Yu G; Wang Y
    Water Res; 2018 Jul; 138():106-117. PubMed ID: 29574198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O
    Wang H; Zhan J; Yao W; Wang B; Deng S; Huang J; Yu G; Wang Y
    Water Res; 2018 Mar; 130():127-138. PubMed ID: 29216480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of methylisoborneol and geosmin abatement in surface water by conventional ozonation and an electro-peroxone process.
    Yao W; Qu Q; von Gunten U; Chen C; Yu G; Wang Y
    Water Res; 2017 Jan; 108():373-382. PubMed ID: 27839831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O
    Bourgin M; Borowska E; Helbing J; Hollender J; Kaiser HP; Kienle C; McArdell CS; Simon E; von Gunten U
    Water Res; 2017 Oct; 122():234-245. PubMed ID: 28601791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of emerging contaminant abatement by conventional ozonation, catalytic ozonation, O
    Guo Y; Zhao E; Wang J; Zhang X; Huang H; Yu G; Wang Y
    J Hazard Mater; 2020 May; 389():121829. PubMed ID: 31836369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of the Electro-Peroxone Process for Micropollutant Abatement Using Chemical Kinetic Approaches.
    Wang H; Su L; Zhu S; Zhu W; Han X; Cheng Y; Yu G; Wang Y
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31330777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of micropollutant abatement during homogeneous catalytic ozonation by a chemical kinetic model.
    Guo Y; Wang H; Wang B; Deng S; Huang J; Yu G; Wang Y
    Water Res; 2018 Oct; 142():383-395. PubMed ID: 29913384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ozonation of the algaecide irgarol: Kinetics, transformation products, and toxicity.
    Ur Rehman SW; Wang H; Yao W; Deantes-Espinosa VM; Wang B; Huang J; Deng S; Yu G; Wang Y
    Chemosphere; 2019 Dec; 236():124374. PubMed ID: 31344619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of emerging biocides and antibiotics in wastewater by ozonation and the electro-peroxone process.
    Wang H; Mustafa M; Yu G; Östman M; Cheng Y; Wang Y; Tysklind M
    Chemosphere; 2019 Nov; 235():575-585. PubMed ID: 31276870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electro-peroxone process for the abatement of emerging contaminants: Mechanisms, recent advances, and prospects.
    Wang Y; Yu G; Deng S; Huang J; Wang B
    Chemosphere; 2018 Oct; 208():640-654. PubMed ID: 29894965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination.
    Mao Y; Guo D; Yao W; Wang X; Yang H; Xie YF; Komarneni S; Yu G; Wang Y
    Water Res; 2018 Mar; 130():322-332. PubMed ID: 29247948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of coagulation-sedimentation-filtration pretreatment on micropollutant abatement by the electro-peroxone process.
    Wang H; Sun L; Yan K; Wang J; Wang C; Yu G; Wang Y
    Chemosphere; 2021 Mar; 266():129230. PubMed ID: 33316471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The beneficial effect of cathodic hydrogen peroxide generation on mitigating chlorinated by-product formation during water treatment by an electro-peroxone process.
    Yao W; Fu J; Yang H; Yu G; Wang Y
    Water Res; 2019 Jun; 157():209-217. PubMed ID: 30954696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abatement of Polychoro-1,3-butadienes in Aqueous Solution by Ozone, UV Photolysis, and Advanced Oxidation Processes (O
    Lee M; Merle T; Rentsch D; Canonica S; von Gunten U
    Environ Sci Technol; 2017 Jan; 51(1):497-505. PubMed ID: 27991774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the concentration and contribution of superoxide radical for micropollutant abatement during ozonation.
    Guo Y; Zhan J; Yu G; Wang Y
    Water Res; 2021 Apr; 194():116927. PubMed ID: 33618107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorothalonil transformation products in drinking water resources: Widespread and challenging to abate.
    Kiefer K; Bader T; Minas N; Salhi E; Janssen EM; von Gunten U; Hollender J
    Water Res; 2020 Sep; 183():116066. PubMed ID: 32652346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of antibiotic resistant bacteria and plasmid-encoded antibiotic resistance genes in water by ozonation and electro-peroxone process.
    Zheng Q; Zhang Y; Qianxin ; Zhang ; Wang Y; Yu G
    Chemosphere; 2023 Apr; 319():138039. PubMed ID: 36738938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Priority pesticides abatement by advanced water technologies: The case of acetamiprid removal by ozonation.
    Cruz-Alcalde A; Sans C; Esplugas S
    Sci Total Environ; 2017 Dec; 599-600():1454-1461. PubMed ID: 28531953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring ozonation as treatment alternative for methiocarb and formed transformation products abatement.
    Cruz-Alcalde A; Sans C; Esplugas S
    Chemosphere; 2017 Nov; 186():725-732. PubMed ID: 28820996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.