These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32007011)

  • 1. Numerical modeling of submicron particles for acoustic concentration in gaseous flow.
    Liu J; Li X; Hu FQ
    J Acoust Soc Am; 2020 Jan; 147(1):152. PubMed ID: 32007011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simplification of the unified gas kinetic scheme.
    Chen S; Guo Z; Xu K
    Phys Rev E; 2016 Aug; 94(2-1):023313. PubMed ID: 27627418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Well-Balanced Unified Gas-Kinetic Scheme for Multicomponent Flows under External Force Field.
    Xiao T
    Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces.
    Muller PB; Barnkob R; Jensen MJ; Bruus H
    Lab Chip; 2012 Nov; 12(22):4617-27. PubMed ID: 23010952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic separation of submicron solid particles in air.
    Imani RJ; Robert E
    Ultrasonics; 2015 Dec; 63():135-40. PubMed ID: 26184447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermophoretic motion behavior of submicron particles in boundary-layer-separation flow around a droplet.
    Wang A; Song Q; Ji B; Yao Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063031. PubMed ID: 26764827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Study of Nanoparticle Deposition in a Gaseous Microchannel under the Influence of Various Forces.
    Bao F; Hao H; Yin Z; Tu C
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33401507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Submicron Particle Concentration and Patterning with Ultralow Frequency Acoustic Vibration.
    Zhou Y; Ma Z; Ai Y
    Anal Chem; 2020 Oct; 92(19):12795-12800. PubMed ID: 32894949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields.
    Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced acoustic resonator dimensions improve focusing efficiency of bacteria and submicron particles.
    Ugawa M; Lee H; Baasch T; Lee M; Kim S; Jeong O; Choi YH; Sohn D; Laurell T; Ota S; Lee S
    Analyst; 2022 Jan; 147(2):274-281. PubMed ID: 34889326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional numerical studies of particle motion and deposition in the channel of diesel particulate filters.
    Wang X; Deng Y; Liu Y
    R Soc Open Sci; 2021 Oct; 8(10):211162. PubMed ID: 34659785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles.
    Yu Z; Lin Z; Shao X; Wang LP
    Phys Rev E; 2017 Sep; 96(3-1):033102. PubMed ID: 29346864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic drag force based on iterative density mapping: A new numerical tool for three-dimensional analysis of particle trajectories in a dielectrophoretic system.
    Knoerzer M; Szydzik C; Tovar-Lopez FJ; Tang X; Mitchell A; Khoshmanesh K
    Electrophoresis; 2016 Feb; 37(4):645-57. PubMed ID: 26643028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale kinetic inviscid flux extracted from a gas-kinetic scheme for simulating incompressible and compressible flows.
    Liu S; Cao J; Zhong C
    Phys Rev E; 2020 Sep; 102(3-1):033310. PubMed ID: 33075992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of particle-particle interactions and particles rotational motion in traveling wave dielectrophoresis.
    Aubry N; Singh P
    Electrophoresis; 2006 Feb; 27(3):703-15. PubMed ID: 16400702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling of particle paths passing through an ultrasonic standing wave.
    Townsend RJ; Hill M; Harris NR; White NM
    Ultrasonics; 2004 Apr; 42(1-9):319-24. PubMed ID: 15047305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phononic-Crystal-Based Particle Sieving in Continuous Flow: Numerical Simulations.
    Huang L; Zhou J; Kong D; Li F
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase separation of a nonionic surfactant aqueous solution in a standing surface acoustic wave for submicron particle manipulation.
    Zhao L; Niu P; Casals E; Zeng M; Wu C; Yang Y; Sun S; Zheng Z; Wang Z; Ning Y; Duan X; Pang W
    Lab Chip; 2021 Feb; 21(4):660-667. PubMed ID: 33393566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.
    Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ
    Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drag and lift coefficients of ellipsoidal particles under rarefied flow conditions.
    Livi C; Di Staso G; Clercx HJH; Toschi F
    Phys Rev E; 2022 Jan; 105(1-2):015306. PubMed ID: 35193293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.