These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32007029)

  • 1. MoO
    Novotný P; Yusuf S; Li F; Lamb HH
    J Chem Phys; 2020 Jan; 152(4):044713. PubMed ID: 32007029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulating Lattice Oxygen in Dual-Functional Mo-V-O Mixed Oxides for Chemical Looping Oxidative Dehydrogenation.
    Chen S; Zeng L; Mu R; Xiong C; Zhao ZJ; Zhao C; Pei C; Peng L; Luo J; Fan LS; Gong J
    J Am Chem Soc; 2019 Nov; 141(47):18653-18657. PubMed ID: 31703164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative dehydrogenation of propane over V2O5/MoO3/Al2O3 and V2O5/Cr2O3/Al2O3: structural characterization and catalytic function.
    Yang S; Iglesia E; Bell AT
    J Phys Chem B; 2005 May; 109(18):8987-9000. PubMed ID: 16852071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molten carbonate shell modified perovskite redox catalyst for anaerobic oxidative dehydrogenation of ethane.
    Gao Y; Wang X; Liu J; Huang C; Zhao K; Zhao Z; Wang X; Li F
    Sci Adv; 2020 Apr; 6(17):eaaz9339. PubMed ID: 32426468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supported Fe
    Raseale S; Marquart W; Jeske K; Prieto G; Claeys M; Fischer N
    Faraday Discuss; 2021 May; 229():208-231. PubMed ID: 33629982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syngas Production by Chemical Looping Dry Reforming of Methane over Ni-modified MoO
    Maeno Z; Koiso H; Shitori T; Hiraoka K; Seki S; Namiki N
    Chem Asian J; 2023 Dec; ():e202301096. PubMed ID: 38146061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Niobium phosphates as new highly selective catalysts for the oxidative dehydrogenation of ethane.
    Weng W; Davies M; Whiting G; Solsona B; Kiely CJ; Carley AF; Taylor SH
    Phys Chem Chem Phys; 2011 Oct; 13(38):17395-404. PubMed ID: 21881631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of Acetaldehyde via Oxidative Dehydrogenation of Ethanol in a Chemical Looping Setup.
    Gebers JC; Abu Kasim AFB; Fulham GJ; Kwong KY; Marek EJ
    ACS Eng Au; 2023 Jun; 3(3):184-194. PubMed ID: 37362007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An operando Raman study of molecular structure and reactivity of molybdenum(VI) oxide supported on anatase for the oxidative dehydrogenation of ethane.
    Tsilomelekis G; Boghosian S
    Phys Chem Chem Phys; 2012 Feb; 14(7):2216-28. PubMed ID: 22143865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relation between surface acidity and MoO
    Zeidan H; Erünal E; Marti ME
    Turk J Chem; 2022; 46(6):2090-2101. PubMed ID: 37621351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling acid catalysis and selective oxidation over MoO
    Wang X; Pei C; Zhao ZJ; Chen S; Li X; Sun J; Song H; Sun G; Wang W; Chang X; Zhang X; Gong J
    Nat Commun; 2023 Apr; 14(1):2039. PubMed ID: 37041149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intensified Ethylene Production via Chemical Looping through an Exergetically Efficient Redox Scheme.
    Neal LM; Haribal VP; Li F
    iScience; 2019 Sep; 19():894-904. PubMed ID: 31513974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation.
    Venegas JM; McDermott WP; Hermans I
    Acc Chem Res; 2018 Oct; 51(10):2556-2564. PubMed ID: 30285416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of active catalysts for the selective oxidative dehydrogenation of methanol on Fe2O3 surface doped with Mo oxide.
    Bowker M; Brookes C; Carley AF; House MP; Kosif M; Sankar G; Wawata I; Wells PP; Yaseneva P
    Phys Chem Chem Phys; 2013 Aug; 15(29):12056-67. PubMed ID: 23552323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of AFeO
    Natesakhawat S; Popczun EJ; Baltrus JP; Wang K; Serna P; Liu S; Meyer R; Lekse JW
    Chempluschem; 2024 Jun; 89(6):e202300596. PubMed ID: 38300225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic Layer Deposition for Preparing Isolated Co Sites on SiO
    Huang R; Cheng Y; Ji Y; Gorte RJ
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study by electrical conductivity measurements of the semiconductive and redox properties of Nb-doped NiO catalysts in correlation with the oxidative dehydrogenation of ethane.
    Popescu I; Skoufa Z; Heracleous E; Lemonidou A; Marcu IC
    Phys Chem Chem Phys; 2015 Mar; 17(12):8138-47. PubMed ID: 25728825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [In-situ FTIR study of CO adsorption on Co-Mo/Al2O3 hydrodesulphurization catalysts].
    Yuan H; Sun SL; Zheng AG; Xu GT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Sep; 28(9):2044-7. PubMed ID: 19093557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced NiO Dispersion on a High Surface Area Pillared Heterostructure Covered by Niobium Leads to Optimal Behaviour in the Oxidative Dehydrogenation of Ethane.
    Rodríguez-Castellón E; Delgado D; Dejoz A; Vázquez I; Agouram S; Cecilia JA; Solsona B; López Nieto JM
    Chemistry; 2020 Jul; 26(42):9371-9381. PubMed ID: 32301531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nature, density, and catalytic role of exposed species on dispersed VOx/CrOx/Al2O3 catalysts.
    Yang S; Iglesia E; Bell AT
    J Phys Chem B; 2006 Feb; 110(6):2732-9. PubMed ID: 16471878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.