These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. A novel hydrogen peroxide sensor based on electrodeposited copper/cuprous oxide nanocomposites. Han L; Tang L; Deng D; He H; Zhou M; Luo L Analyst; 2019 Jan; 144(2):685-690. PubMed ID: 30516176 [TBL] [Abstract][Full Text] [Related]
25. CO2 conversion to methanol on Cu(I) oxide nanolayers and clusters: an electronic structure insight into the reaction mechanism. Uzunova EL; Seriani N; Mikosch H Phys Chem Chem Phys; 2015 Apr; 17(16):11088-94. PubMed ID: 25826462 [TBL] [Abstract][Full Text] [Related]
26. CO2 Activation and Methanol Synthesis on Novel Au/TiC and Cu/TiC Catalysts. Vidal AB; Feria L; Evans J; Takahashi Y; Liu P; Nakamura K; Illas F; Rodriguez JA J Phys Chem Lett; 2012 Aug; 3(16):2275-80. PubMed ID: 26295783 [TBL] [Abstract][Full Text] [Related]
27. Effect of the components' interface on the synthesis of methanol over Cu/ZnO from CO2/H2: a microkinetic analysis based on DFT + U calculations. Tang QL; Zou WT; Huang RK; Wang Q; Duan XX Phys Chem Chem Phys; 2015 Mar; 17(11):7317-33. PubMed ID: 25697118 [TBL] [Abstract][Full Text] [Related]
28. Response to Comment on "Active sites for CO Kattel S; Ramírez PJ; Chen JG; Rodriguez JA; Liu P Science; 2017 Sep; 357(6354):. PubMed ID: 28860355 [TBL] [Abstract][Full Text] [Related]
29. A combined theoretical and experimental investigation on the photocatalytic hydrogenation of CO Xiao H; Lian Y; Zhang S; Zhang M; Zhang J; Li C Nanoscale; 2023 May; 15(20):9040-9048. PubMed ID: 37129866 [TBL] [Abstract][Full Text] [Related]
30. Dissociative Carbon Dioxide Adsorption and Morphological Changes on Cu(100) and Cu(111) at Ambient Pressures. Eren B; Weatherup RS; Liakakos N; Somorjai GA; Salmeron M J Am Chem Soc; 2016 Jul; 138(26):8207-11. PubMed ID: 27280375 [TBL] [Abstract][Full Text] [Related]
32. Selective carbon dioxide electroreduction to ethylene and ethanol by core-shell copper/cuprous oxide. Shang L; Lv X; Shen H; Shao Z; Zheng G J Colloid Interface Sci; 2019 Sep; 552():426-431. PubMed ID: 31151020 [TBL] [Abstract][Full Text] [Related]
33. Catalyst Chemical State during CO Oxidation Reaction on Cu(111) Studied with Ambient-Pressure X-ray Photoelectron Spectroscopy and Near Edge X-ray Adsorption Fine Structure Spectroscopy. Eren B; Heine C; Bluhm H; Somorjai GA; Salmeron M J Am Chem Soc; 2015 Sep; 137(34):11186-90. PubMed ID: 26275662 [TBL] [Abstract][Full Text] [Related]
34. Microwave-hydrothermal synthesis and characterization of nanostructured copper substituted ZnM2O4 (M = Al, Ga) spinels as precursors for thermally stable Cu catalysts. Conrad F; Massue C; Kühl S; Kunkes E; Girgsdies F; Kasatkin I; Zhang B; Friedrich M; Luo Y; Armbrüster M; Patzke GR; Behrens M Nanoscale; 2012 Mar; 4(6):2018-28. PubMed ID: 22327266 [TBL] [Abstract][Full Text] [Related]
35. Revealing CO Kim J; Yu Y; Go TW; Gallet JJ; Bournel F; Mun BS; Park JY Nat Commun; 2023 Jun; 14(1):3273. PubMed ID: 37280205 [TBL] [Abstract][Full Text] [Related]
36. In Situ Monitoring of H Wang J; Li C; Zhu Y; Boscoboinik JA; Zhou G J Phys Chem Lett; 2022 Jun; 13(24):5597-5604. PubMed ID: 35700476 [TBL] [Abstract][Full Text] [Related]
37. Electrocatalytic Production of C3-C4 Compounds by Conversion of CO2 on a Chloride-Induced Bi-Phasic Cu2O-Cu Catalyst. Lee S; Kim D; Lee J Angew Chem Int Ed Engl; 2015 Dec; 54(49):14701-5. PubMed ID: 26473324 [TBL] [Abstract][Full Text] [Related]
38. Controllable synthesis of Cu2O/Cu composites with stable photocatalytic properties. Liu X; Li F; Wang H; Yang J; Li Z; Wang Y; Jin H J Nanosci Nanotechnol; 2014 Jun; 14(6):4108-13. PubMed ID: 24738359 [TBL] [Abstract][Full Text] [Related]
39. XPS study of interface and ligand effects in supported Cu2O and CuO nanometric particles. Morales J; Espinos JP; Caballero A; Gonzalez-Elipe AR; Mejias JA J Phys Chem B; 2005 Apr; 109(16):7758-65. PubMed ID: 16851901 [TBL] [Abstract][Full Text] [Related]
40. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Kas R; Kortlever R; Milbrat A; Koper MT; Mul G; Baltrusaitis J Phys Chem Chem Phys; 2014 Jun; 16(24):12194-201. PubMed ID: 24817571 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]