These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32007070)

  • 1. The roles of step-site and zinc in surface chemistry of formic acid on clean and Zn-modified Cu(111) and Cu(997) surfaces studied by HR-XPS, TPD, and IRAS.
    Shiozawa Y; Koitaya T; Mukai K; Yoshimoto S; Yoshinobu J
    J Chem Phys; 2020 Jan; 152(4):044703. PubMed ID: 32007070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of desorption and decomposition kinetics of formic acid on Cu(111): The importance of hydrogen bonding between adsorbed species.
    Shiozawa Y; Koitaya T; Mukai K; Yoshimoto S; Yoshinobu J
    J Chem Phys; 2015 Dec; 143(23):234707. PubMed ID: 26696070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formic acid adsorption and decomposition on clean and atomic oxygen pre-covered Cu(100) surfaces.
    Li G; Guo W; Zhou X; Yu X; Zhu J
    J Chem Phys; 2020 Mar; 152(11):114703. PubMed ID: 32199429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assisted deprotonation of formic acid on Cu(111) and self-assembly of 1D chains.
    Baber AE; Mudiyanselage K; Senanayake SD; Beatriz-Vidal A; Luck KA; Sykes EC; Liu P; Rodriguez JA; Stacchiola DJ
    Phys Chem Chem Phys; 2013 Aug; 15(29):12291-8. PubMed ID: 23775138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Intermolecular Interactions in the Catalytic Reaction of Formic Acid on Cu(111).
    Shiotari A; Putra SEM; Shiozawa Y; Hamamoto Y; Inagaki K; Morikawa Y; Sugimoto Y; Yoshinobu J; Hamada I
    Small; 2021 May; 17(20):e2008010. PubMed ID: 33759365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogenation of Formate Species Using Atomic Hydrogen on a Cu(111) Model Catalyst.
    Takeyasu K; Sawaki Y; Imabayashi T; Putra SEM; Halim HH; Quan J; Hamamoto Y; Hamada I; Morikawa Y; Kondo T; Fujitani T; Nakamura J
    J Am Chem Soc; 2022 Jul; 144(27):12158-12166. PubMed ID: 35762507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface chemistry of methanol on different ZnO surfaces studied by vibrational spectroscopy.
    Jin L; Wang Y
    Phys Chem Chem Phys; 2017 May; 19(20):12992-13001. PubMed ID: 28480918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption and reactions of NO on clean and CO-precovered Ir(111).
    Fujitani T; Nakamura I; Kobayashi Y; Takahashi A; Haneda M; Hamada H
    J Phys Chem B; 2005 Sep; 109(37):17603-7. PubMed ID: 16853252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of CO2 and coadsorption of H and CO2 on potassium-promoted Cu(115).
    Onsgaard J; Hoffmann SV; Møller P; Godowski PJ; Wagner JB; Paolucci G; Baraldi A; Comelli G; Groso A
    Chemphyschem; 2003 Apr; 4(5):466-73. PubMed ID: 12785260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of the atomic-scale processes of dissociative adsorption and spillover of hydrogen on the single atom alloy catalyst Pd/Cu(111).
    Osada W; Tanaka S; Mukai K; Kawamura M; Choi Y; Ozaki F; Ozaki T; Yoshinobu J
    Phys Chem Chem Phys; 2022 Sep; 24(36):21705-21713. PubMed ID: 36069673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of Fano line shapes in infrared vibrational spectra of CO2 adsorbed on Cu(997) and Cu(111).
    Koitaya T; Shiozawa Y; Mukai K; Yoshimoto S; Yoshinobu J
    J Chem Phys; 2016 Feb; 144(5):054703. PubMed ID: 26851930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature evolution of structure and bonding of formic acid and formate on fully oxidized and highly reduced CeO2(111).
    Gordon WO; Xu Y; Mullins DR; Overbury SH
    Phys Chem Chem Phys; 2009 Dec; 11(47):11171-83. PubMed ID: 20024386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO
    Chattaraj D; Majumder C
    Phys Chem Chem Phys; 2023 Jan; 25(3):2584-2594. PubMed ID: 36602161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The surface chemistry of dimethyl disulfide on copper.
    Furlong OJ; Miller BP; Li Z; Walker J; Burkholder L; Tysoe WT
    Langmuir; 2010 Nov; 26(21):16375-80. PubMed ID: 20617851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics of formic acid conversion to adsorbed formates on Pt(111) by transient calorimetry.
    Silbaugh TL; Karp EM; Campbell CT
    J Am Chem Soc; 2014 Mar; 136(10):3964-71. PubMed ID: 24512006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous uptake and adsorption of gas-phase formic acid on oxide and clay particle surfaces: the roles of surface hydroxyl groups and adsorbed water in formic acid adsorption and the impact of formic acid adsorption on water uptake.
    Rubasinghege G; Ogden S; Baltrusaitis J; Grassian VH
    J Phys Chem A; 2013 Nov; 117(44):11316-27. PubMed ID: 24079575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cirrus cloud mimics in the laboratory: an infrared spectroscopy study of thin films of mixed ice of water with organic acids and ammonia.
    Hellebust S; O'Riordan B; Sodeau J
    J Chem Phys; 2007 Feb; 126(8):084702. PubMed ID: 17343464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TPD and FT-IRAS investigation of ethylene oxide (EtO) adsorption on a Au(211) stepped surface.
    Kim J; Koel BE
    Langmuir; 2005 Apr; 21(9):3886-91. PubMed ID: 15835951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the mechanism of the direct pathway for formic acid oxidation at a Pt(111) electrode.
    Xu J; Yuan D; Yang F; Mei D; Zhang Z; Chen YX
    Phys Chem Chem Phys; 2013 Mar; 15(12):4367-76. PubMed ID: 23416880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption/desorption of H2 and CO on Zn-modified Pd(111).
    Tamtögl A; Kratzer M; Killman J; Winkler A
    J Chem Phys; 2008 Dec; 129(22):224706. PubMed ID: 19071938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.