These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 32007075)

  • 1. All-electron ab initio Bethe-Salpeter equation approach to neutral excitations in molecules with numeric atom-centered orbitals.
    Liu C; Kloppenburg J; Yao Y; Ren X; Appel H; Kanai Y; Blum V
    J Chem Phys; 2020 Jan; 152(4):044105. PubMed ID: 32007075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules.
    Bruneval F; Hamed SM; Neaton JB
    J Chem Phys; 2015 Jun; 142(24):244101. PubMed ID: 26133404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-Electron BSE@
    Yao Y; Golze D; Rinke P; Blum V; Kanai Y
    J Chem Theory Comput; 2022 Mar; 18(3):1569-1583. PubMed ID: 35138865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optimally tuned range-separated hybrid starting point for ab initio GW plus Bethe-Salpeter equation calculations of molecules.
    McKeon CA; Hamed SM; Bruneval F; Neaton JB
    J Chem Phys; 2022 Aug; 157(7):074103. PubMed ID: 35987597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy Assessment of GW Starting Points for Calculating Molecular Excitation Energies Using the Bethe-Salpeter Formalism.
    Gui X; Holzer C; Klopper W
    J Chem Theory Comput; 2018 Apr; 14(4):2127-2136. PubMed ID: 29499116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Koopmans Meets Bethe-Salpeter: Excitonic Optical Spectra without GW.
    Elliott JD; Colonna N; Marsili M; Marzari N; Umari P
    J Chem Theory Comput; 2019 Jun; 15(6):3710-3720. PubMed ID: 30998361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking the Bethe-Salpeter Formalism on a Standard Organic Molecular Set.
    Jacquemin D; Duchemin I; Blase X
    J Chem Theory Comput; 2015 Jul; 11(7):3290-304. PubMed ID: 26207104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An assessment of low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach and the Tamm-Dancoff approximation.
    Rangel T; Hamed SM; Bruneval F; Neaton JB
    J Chem Phys; 2017 May; 146(19):194108. PubMed ID: 28527441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides.
    Hung L; Bruneval F; Baishya K; Öğüt S
    J Chem Theory Comput; 2017 May; 13(5):2135-2146. PubMed ID: 28387124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Helium Atom Excitations by the GW and Bethe-Salpeter Many-Body Formalism.
    Li J; Holzmann M; Duchemin I; Blase X; Olevano V
    Phys Rev Lett; 2017 Apr; 118(16):163001. PubMed ID: 28474954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simplified GW/BSE Approach for Charged and Neutral Excitation Energies of Large Molecules and Nanomaterials.
    Cho Y; Bintrim SJ; Berkelbach TC
    J Chem Theory Comput; 2022 Jun; 18(6):3438-3446. PubMed ID: 35544591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the
    Hashemi Z; Leppert L
    J Phys Chem A; 2021 Mar; 125(10):2163-2172. PubMed ID: 33656894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining Renormalized Singles
    Li J; Golze D; Yang W
    J Chem Theory Comput; 2022 Nov; 18(11):6637-6645. PubMed ID: 36279250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining localized orbital scaling correction and Bethe-Salpeter equation for accurate excitation energies.
    Li J; Jin Y; Su NQ; Yang W
    J Chem Phys; 2022 Apr; 156(15):154101. PubMed ID: 35459294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-Conserved and Spin-Flip Optical Excitations from the Bethe-Salpeter Equation Formalism.
    Monino E; Loos PF
    J Chem Theory Comput; 2021 May; 17(5):2852-2867. PubMed ID: 33724811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-electron real-time and imaginary-time time-dependent density functional theory within a numeric atom-centered basis function framework.
    Hekele J; Yao Y; Kanai Y; Blum V; Kratzer P
    J Chem Phys; 2021 Oct; 155(15):154801. PubMed ID: 34686041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is the Bethe-Salpeter Formalism Accurate for Excitation Energies? Comparisons with TD-DFT, CASPT2, and EOM-CCSD.
    Jacquemin D; Duchemin I; Blase X
    J Phys Chem Lett; 2017 Apr; 8(7):1524-1529. PubMed ID: 28301726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the Accuracy of the Bethe-Salpeter (BSE/GW) Oscillator Strengths.
    Jacquemin D; Duchemin I; Blondel A; Blase X
    J Chem Theory Comput; 2016 Aug; 12(8):3969-81. PubMed ID: 27403612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitation Energies from the Single-Particle Green's Function with the GW Approximation.
    Jin Y; Yang W
    J Phys Chem A; 2019 Apr; 123(14):3199-3204. PubMed ID: 30920830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the Role of the Kohn-Sham Density in the Calculation of the Low-Lying Bethe-Salpeter Excitation Energies.
    Kshirsagar AR; Poloni R
    J Phys Chem A; 2023 Mar; 127(11):2618-2627. PubMed ID: 36913525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.