BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32007615)

  • 1. A genetic toolbox for metabolic engineering of Issatchenkia orientalis.
    Cao M; Fatma Z; Song X; Hsieh PH; Tran VG; Lyon WL; Sayadi M; Shao Z; Yoshikuni Y; Zhao H
    Metab Eng; 2020 May; 59():87-97. PubMed ID: 32007615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a CRISPR/Cas9-Based Tool for Gene Deletion in
    Tran VG; Cao M; Fatma Z; Song X; Zhao H
    mSphere; 2019 Jun; 4(3):. PubMed ID: 31243078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A landing pad system for multicopy gene integration in Issatchenkia orientalis.
    Fatma Z; Tan SI; Boob AG; Zhao H
    Metab Eng; 2023 Jul; 78():200-208. PubMed ID: 37343658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cas9-Based Metabolic Engineering of
    Lee YG; Kim C; Kuanyshev N; Kang NK; Fatma Z; Wu ZY; Cheng MH; Singh V; Yoshikuni Y; Zhao H; Jin YS
    J Agric Food Chem; 2022 Sep; 70(38):12085-12094. PubMed ID: 36103687
    [No Abstract]   [Full Text] [Related]  

  • 5. A Stable, Autonomously Replicating Plasmid Vector Containing Pichia pastoris Centromeric DNA.
    Nakamura Y; Nishi T; Noguchi R; Ito Y; Watanabe T; Nishiyama T; Aikawa S; Hasunuma T; Ishii J; Okubo Y; Kondo A
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29802190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cpf1-assisted efficient genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae.
    Li ZH; Liu M; Wang FQ; Wei DZ
    Biotechnol Lett; 2018 Aug; 40(8):1253-1261. PubMed ID: 29797148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration.
    Huang S; Geng A
    J Biotechnol; 2020 Feb; 310():13-20. PubMed ID: 32006629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris.
    Weninger A; Hatzl AM; Schmid C; Vogl T; Glieder A
    J Biotechnol; 2016 Oct; 235():139-49. PubMed ID: 27015975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examining organic acid production potential and growth-coupled strategies in Issatchenkia orientalis using constraint-based modeling.
    Suthers PF; Maranas CD
    Biotechnol Prog; 2022 Sep; 38(5):e3276. PubMed ID: 35603544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals.
    Mitsui R; Yamada R; Ogino H
    World J Microbiol Biotechnol; 2019 Jul; 35(7):111. PubMed ID: 31280424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated transcriptomic and proteomic analysis of the acetic acid stress in Issatchenkia orientalis.
    Li Y; Wu Z; Li R; Miao Y; Weng P; Wang L
    J Food Biochem; 2020 Jun; 44(6):e13203. PubMed ID: 32232868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica.
    Fournier P; Abbas A; Chasles M; Kudla B; Ogrydziak DM; Yaver D; Xuan JW; Peito A; Ribet AM; Feynerol C
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):4912-6. PubMed ID: 8506336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and Characterization of a Novel Issatchenkia orientalis GPI-Anchored Protein, IoGas1, Required for Resistance to Low pH and Salt Stress.
    Matsushika A; Negi K; Suzuki T; Goshima T; Hoshino T
    PLoS One; 2016; 11(9):e0161888. PubMed ID: 27589271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae.
    Vanegas KG; Lehka BJ; Mortensen UH
    Microb Cell Fact; 2017 Feb; 16(1):25. PubMed ID: 28179021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications.
    Lian J; Mishra S; Zhao H
    Metab Eng; 2018 Nov; 50():85-108. PubMed ID: 29702275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR.
    Tsai CS; Kong II; Lesmana A; Million G; Zhang GC; Kim SR; Jin YS
    Biotechnol Bioeng; 2015 Nov; 112(11):2406-11. PubMed ID: 25943337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Centromeric DNA Facilitates Nonconventional Yeast Genetic Engineering.
    Cao M; Gao M; Lopez-Garcia CL; Wu Y; Seetharam AS; Severin AJ; Shao Z
    ACS Synth Biol; 2017 Aug; 6(8):1545-1553. PubMed ID: 28391682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic changes of Issatchenkia orientalis under acetic acid stress by transcriptome profile using RNA-sequencing.
    Li Y; Li Y; Li R; Liu L; Miao Y; Weng P; Wu Z
    Int Microbiol; 2022 Aug; 25(3):417-426. PubMed ID: 34811604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and functional characterization of xylitol dehydrogenase genes from Issatchenkia orientalis and Torulaspora delbrueckii.
    Han X; Hu X; Zhou C; Wang H; Li Q; Ouyang Y; Kuang X; Xiao D; Xiang Q; Yu X; Li X; Gu Y; Zhao K; Chen Q; Ma M
    J Biosci Bioeng; 2020 Jul; 130(1):29-35. PubMed ID: 32171656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.