These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32007615)

  • 21. Genome-scale metabolic reconstruction of the non-model yeast
    Suthers PF; Dinh HV; Fatma Z; Shen Y; Chan SHJ; Rabinowitz JD; Zhao H; Maranas CD
    Metab Eng Commun; 2020 Dec; 11():e00148. PubMed ID: 33134082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris.
    Cai P; Duan X; Wu X; Gao L; Ye M; Zhou YJ
    Nucleic Acids Res; 2021 Jul; 49(13):7791-7805. PubMed ID: 34197615
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploiting Issatchenkia orientalis SD108 for succinic acid production.
    Xiao H; Shao Z; Jiang Y; Dole S; Zhao H
    Microb Cell Fact; 2014 Aug; 13():121. PubMed ID: 25159171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of a panARS-based episomal vector in the methylotrophic yeast Pichia pastoris for recombinant protein production and synthetic biology applications.
    Camattari A; Goh A; Yip LY; Tan AH; Ng SW; Tran A; Liu G; Liachko I; Dunham MJ; Rancati G
    Microb Cell Fact; 2016 Aug; 15(1):139. PubMed ID: 27515025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae.
    Verwaal R; Buiting-Wiessenhaan N; Dalhuijsen S; Roubos JA
    Yeast; 2018 Feb; 35(2):201-211. PubMed ID: 28886218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of Saccharomyces cerevisiae using the CRISPR/Cas9 system to minimize ethyl carbamate accumulation during Chinese rice wine fermentation.
    Wu D; Xie W; Li X; Cai G; Lu J; Xie G
    Appl Microbiol Biotechnol; 2020 May; 104(10):4435-4444. PubMed ID: 32215703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EasyCloneYALI: CRISPR/Cas9-Based Synthetic Toolbox for Engineering of the Yeast Yarrowia lipolytica.
    Holkenbrink C; Dam MI; Kildegaard KR; Beder J; Dahlin J; Doménech Belda D; Borodina I
    Biotechnol J; 2018 Sep; 13(9):e1700543. PubMed ID: 29377615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae.
    Shi S; Liang Y; Zhang MM; Ang EL; Zhao H
    Metab Eng; 2016 Jan; 33():19-27. PubMed ID: 26546089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae.
    Mans R; van Rossum HM; Wijsman M; Backx A; Kuijpers NG; van den Broek M; Daran-Lapujade P; Pronk JT; van Maris AJ; Daran JM
    FEMS Yeast Res; 2015 Mar; 15(2):. PubMed ID: 25743786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Formation of ARS-independent miniplasmids upon transformation of yeast Pichia methanolica with DNA molecules containing "transforming" and "nontransforming" genes].
    Tarutina MG; Tolstorukov II
    Genetika; 2002 Nov; 38(11):1451-62. PubMed ID: 12500670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel autonomously replicating sequence (ARS) for multiple integration in the yeast Hansenula polymorpha DL-1.
    Sohn JH; Choi ES; Kim CH; Agaphonov MO; Ter-Avanesyan MD; Rhee JS; Rhee SK
    J Bacteriol; 1996 Aug; 178(15):4420-8. PubMed ID: 8755868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae.
    Jakočiūnas T; Bonde I; Herrgård M; Harrison SJ; Kristensen M; Pedersen LE; Jensen MK; Keasling JD
    Metab Eng; 2015 Mar; 28():213-222. PubMed ID: 25638686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers.
    Weninger A; Fischer JE; Raschmanová H; Kniely C; Vogl T; Glieder A
    J Cell Biochem; 2018 Apr; 119(4):3183-3198. PubMed ID: 29091307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae.
    Jakočiūnas T; Rajkumar AS; Zhang J; Arsovska D; Rodriguez A; Jendresen CB; Skjødt ML; Nielsen AT; Borodina I; Jensen MK; Keasling JD
    ACS Synth Biol; 2015 Nov; 4(11):1226-34. PubMed ID: 25781611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis.
    Jetti KD; Gns RR; Garlapati D; Nammi SK
    Int Microbiol; 2019 Jun; 22(2):247-254. PubMed ID: 30810988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Development of a method for vector transformation of the methyltrophic yeast Pichia methanolica].
    Tarutina MG; Tolstorukov II
    Genetika; 1994 Jun; 30(6):783-90. PubMed ID: 7958792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR-Cas9 Genome Engineering in Saccharomyces cerevisiae Cells.
    Ryan OW; Poddar S; Cate JH
    Cold Spring Harb Protoc; 2016 Jun; 2016(6):. PubMed ID: 27250940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards systems metabolic engineering in Pichia pastoris.
    Schwarzhans JP; Luttermann T; Geier M; Kalinowski J; Friehs K
    Biotechnol Adv; 2017 Nov; 35(6):681-710. PubMed ID: 28760369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthetic Biology of Yeast.
    Liu Z; Zhang Y; Nielsen J
    Biochemistry; 2019 Mar; 58(11):1511-1520. PubMed ID: 30618248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas system for yeast genome engineering: advances and applications.
    Stovicek V; Holkenbrink C; Borodina I
    FEMS Yeast Res; 2017 Aug; 17(5):. PubMed ID: 28505256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.