These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32007615)

  • 41. Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System.
    Lian J; HamediRad M; Zhao H
    Biotechnol J; 2018 Sep; 13(9):e1700601. PubMed ID: 29436783
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway.
    Zhu X; Zhao D; Qiu H; Fan F; Man S; Bi C; Zhang X
    Metab Eng; 2017 Sep; 43(Pt A):37-45. PubMed ID: 28800965
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of Saccharomyces cerevisiae GAS1 with respect to its involvement in tolerance to low pH and salt stress.
    Matsushika A; Suzuki T; Goshima T; Hoshino T
    J Biosci Bioeng; 2017 Aug; 124(2):164-170. PubMed ID: 28476241
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae.
    Mans R; Hassing EJ; Wijsman M; Giezekamp A; Pronk JT; Daran JM; van Maris AJA
    FEMS Yeast Res; 2017 Dec; 17(8):. PubMed ID: 29145596
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision.
    Bao Z; HamediRad M; Xue P; Xiao H; Tasan I; Chao R; Liang J; Zhao H
    Nat Biotechnol; 2018 Jul; 36(6):505-508. PubMed ID: 29734295
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.
    Kim S; Lee K; Bae SJ; Hahn JS
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2705-14. PubMed ID: 25573467
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains.
    Lian J; Bao Z; Hu S; Zhao H
    Biotechnol Bioeng; 2018 Jun; 115(6):1630-1635. PubMed ID: 29460422
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multiplexed CRISPR/Cas9- and TAR-Mediated Promoter Engineering of Natural Product Biosynthetic Gene Clusters in Yeast.
    Kang HS; Charlop-Powers Z; Brady SF
    ACS Synth Biol; 2016 Sep; 5(9):1002-10. PubMed ID: 27197732
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

  • 51. Identification of key DNA elements involved in promoter recognition by Mxr1p, a master regulator of methanol utilization pathway in Pichia pastoris.
    Kranthi BV; Kumar R; Kumar NV; Rao DN; Rangarajan PN
    Biochim Biophys Acta; 2009; 1789(6-8):460-8. PubMed ID: 19450714
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification and characterization of CEN12 in the budding yeast Saccharomyces cerevisiae.
    Gammie AE; Rose MD
    Curr Genet; 1995 Nov; 28(6):512-6. PubMed ID: 8593680
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiplexed CRISPR-Cas9-Based Genome Editing of
    Otoupal PB; Ito M; Arkin AP; Magnuson JK; Gladden JM; Skerker JM
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30894433
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Physiological and Metabolomic Analysis of Issatchenkia orientalis MTY1 With Multiple Tolerance for Cellulosic Bioethanol Production.
    Seong YJ; Lee HJ; Lee JE; Kim S; Lee DY; Kim KH; Park YC
    Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28843023
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 56. Metabolic engineering of low-pH-tolerant non-model yeast,
    Wu ZY; Sun W; Shen Y; Pratas J; Suthers PF; Hsieh PH; Dwaraknath S; Rabinowitz JD; Maranas CD; Shao Z; Yoshikuni Y
    Metab Eng Commun; 2023 Jun; 16():e00220. PubMed ID: 36860699
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae.
    Sun J; Shao Z; Zhao H; Nair N; Wen F; Xu JH; Zhao H
    Biotechnol Bioeng; 2012 Aug; 109(8):2082-92. PubMed ID: 22383307
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Construction of plasmids with tunable copy numbers in Saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration.
    Lian J; Jin R; Zhao H
    Biotechnol Bioeng; 2016 Nov; 113(11):2462-73. PubMed ID: 27159405
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Isolation and nucleotide sequence of an autonomously replicating sequence (ARS) element functional in Candida albicans and Saccharomyces cerevisiae.
    Cannon RD; Jenkinson HF; Shepherd MG
    Mol Gen Genet; 1990 Apr; 221(2):210-8. PubMed ID: 2196431
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CRISPR/Cpf1 facilitated large fragment deletion in Saccharomyces cerevisiae.
    Li ZH; Liu M; Lyu XM; Wang FQ; Wei DZ
    J Basic Microbiol; 2018 Dec; 58(12):1100-1104. PubMed ID: 30198089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.