These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32007768)

  • 1. Effect of Pt catalyst on the condensable hydrocarbon content generated via food waste pyrolysis.
    Kim S; Lee CG; Kim YT; Kim KH; Lee J
    Chemosphere; 2020 Jun; 248():126043. PubMed ID: 32007768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis of food waste over a Pt catalyst in CO
    Kim S; Lee J
    J Hazard Mater; 2020 Jul; 393():122449. PubMed ID: 32151938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of polycyclic compounds and biphenyls generated by pyrolysis of industrial plastic waste by using supported metal catalysts: A case study of polyethylene terephthalate treatment.
    Kim S; Park C; Lee J
    J Hazard Mater; 2020 Jun; 392():122464. PubMed ID: 32193114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.
    Al-Rahbi AS; Onwudili JA; Williams PT
    Bioresour Technol; 2016 Mar; 204():71-79. PubMed ID: 26773946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of eggshell- and homo-type Ni/Al
    Valizadeh S; Ko CH; Lee J; Lee SH; Yu YJ; Show PL; Rhee GH; Park YK
    J Environ Manage; 2021 Sep; 294():112959. PubMed ID: 34116308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions.
    Park C; Lee N; Kim J; Lee J
    Environ Pollut; 2021 Feb; 270():116045. PubMed ID: 33257148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolysis of polyolefins for increasing the yield of monomers' recovery.
    Donaj PJ; Kaminsky W; Buzeto F; Yang W
    Waste Manag; 2012 May; 32(5):840-6. PubMed ID: 22093704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave pyrolysis of textile dyeing sludge in a continuously operated auger reactor: Condensates and non-condensable gases.
    Gao Z; Zhang H; Ao W; Li J; Liu G; Chen X; Fu J; Ran C; Liu Y; Kang Q; Mao X; Dai J
    Environ Pollut; 2017 Sep; 228():331-343. PubMed ID: 28551563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolysis of waste tires: A modeling and parameter estimation study using Aspen Plus
    Ismail HY; Abbas A; Azizi F; Zeaiter J
    Waste Manag; 2017 Feb; 60():482-493. PubMed ID: 28341422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.
    Hwang IH; Kobayashi J; Kawamoto K
    Waste Manag; 2014 Feb; 34(2):402-10. PubMed ID: 24246576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renewable jet-fuel range hydrocarbons production from co-pyrolysis of lignin and soapstock with the activated carbon catalyst.
    Duan D; Zhang Y; Lei H; Villota E; Ruan R
    Waste Manag; 2019 Apr; 88():1-9. PubMed ID: 31079620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of pyrolytic non-condensable gases from polypropylene co-polymer into bamboo-type carbon nanotubes and high-quality oil using biochar as catalyst.
    Shah K; Patel S; Halder P; Kundu S; Marzbali MH; Hakeem IG; Pramanik BK; Chiang K; Patel T
    J Environ Manage; 2022 Jan; 301():113791. PubMed ID: 34592670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scrap tyre pyrolysis: Modified chemical percolation devolatilization (M-CPD) to describe the influence of pyrolysis conditions on product yields.
    Tan V; De Girolamo A; Hosseini T; Alhesan JA; Zhang L
    Waste Manag; 2018 Jun; 76():516-527. PubMed ID: 29555115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrolysis of waste tyres: a review.
    Williams PT
    Waste Manag; 2013 Aug; 33(8):1714-28. PubMed ID: 23735607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Employing CO
    Lee J; Choi D; Tsang YF; Oh JI; Kwon EE
    Environ Pollut; 2017 May; 224():476-483. PubMed ID: 28256357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow pyrolysis of agro-food wastes and physicochemical characterization of biofuel products.
    Patra BR; Nanda S; Dalai AK; Meda V
    Chemosphere; 2021 Dec; 285():131431. PubMed ID: 34329143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two stages catalytic pyrolysis of refuse derived fuel: production of biofuel via syncrude.
    Miskolczi N; Buyong F; Angyal A; Williams PT; Bartha L
    Bioresour Technol; 2010 Nov; 101(22):8881-90. PubMed ID: 20663664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic pyrolysis of tire waste: Impacts of biochar catalyst on product evolution.
    Chao L; Zhang C; Zhang L; Gholizadeh M; Hu X
    Waste Manag; 2020 Oct; 116():9-21. PubMed ID: 32781409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste.
    Park C; Choi H; Andrew Lin KY; Kwon EE; Lee J
    Energy (Oxf); 2021 Sep; 230():120876. PubMed ID: 33994654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic gasification of refuse-derived fuel in a two-stage laboratory scale pyrolysis/gasification unit with catalyst based on clay minerals.
    Šuhaj P; Haydary J; Husár J; Steltenpohl P; Šupa I
    Waste Manag; 2019 Feb; 85():1-10. PubMed ID: 30803562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.