These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 32007892)
21. Preparative field flow fractionation for complex environmental samples: online detection by inductively coupled plasma mass spectrometry and offline detection by gas chromatography with flame ionization. Nischwitz V; Gottselig N; Braun M J Chromatogr A; 2020 Nov; 1632():461581. PubMed ID: 33068828 [TBL] [Abstract][Full Text] [Related]
22. Temporal variation in TiO Nabi MM; Wang J; Goharian E; Baalousha M Sci Total Environ; 2022 Feb; 807(Pt 3):151081. PubMed ID: 34678372 [TBL] [Abstract][Full Text] [Related]
24. Cloud point extraction (CPE) combined with single particle -inductively coupled plasma-mass spectrometry (SP-ICP-MS) to analyze and characterize nano-silver sulfide in water environment. Wei WJ; Yang Y; Li XY; Huang P; Wang Q; Yang PJ Talanta; 2022 Mar; 239():123117. PubMed ID: 34890942 [TBL] [Abstract][Full Text] [Related]
25. Detection and Quantification of Silver Nanoparticles at Environmentally Relevant Concentrations Using Asymmetric Flow Field-Flow Fractionation Online with Single Particle Inductively Coupled Plasma Mass Spectrometry. Huynh KA; Siska E; Heithmar E; Tadjiki S; Pergantis SA Anal Chem; 2016 May; 88(9):4909-16. PubMed ID: 27104795 [TBL] [Abstract][Full Text] [Related]
26. Comparison of three analytical methods to measure the size of silver nanoparticles in real environmental water and wastewater samples. Chang YJ; Shih YH; Su CH; Ho HC J Hazard Mater; 2017 Jan; 322(Pt A):95-104. PubMed ID: 27041441 [TBL] [Abstract][Full Text] [Related]
27. Flow field-flow fractionation and single particle inductively coupled plasma mass spectrometry as a powerful tool for tracking and understanding the sensing mechanism of Ag-Au bimetallic nanoparticles toward cobalt ions. Maknun L; Sumranjit J; Wutikhun T; Lobinski R; Szpunar J; Siripinyanond A Anal Chim Acta; 2024 May; 1301():342485. PubMed ID: 38553115 [TBL] [Abstract][Full Text] [Related]
28. An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials. DeLoid GM; Wang Y; Kapronezai K; Lorente LR; Zhang R; Pyrgiotakis G; Konduru NV; Ericsson M; White JC; De La Torre-Roche R; Xiao H; McClements DJ; Demokritou P Part Fibre Toxicol; 2017 Oct; 14(1):40. PubMed ID: 29029643 [TBL] [Abstract][Full Text] [Related]
29. Comparative study of extraction methods of silver species from faeces of animals fed with silver-based nanomaterials. Jiménez MS; Bakir M; Ben-Jeddou K; Bolea E; Pérez-Arantegui J; Laborda F Mikrochim Acta; 2023 May; 190(6):204. PubMed ID: 37160774 [TBL] [Abstract][Full Text] [Related]
30. A Review on the Environmental Fate Models for Predicting the Distribution of Engineered Nanomaterials in Surface Waters. Suhendra E; Chang CH; Hou WC; Hsieh YC Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604975 [TBL] [Abstract][Full Text] [Related]
31. Extraction Method Development for Quantitative Detection of Silver Nanoparticles in Environmental Soils and Sediments by Single Particle Inductively Coupled Plasma Mass Spectrometry. Li L; Wang Q; Yang Y; Luo L; Ding R; Yang ZG; Li HP Anal Chem; 2019 Aug; 91(15):9442-9450. PubMed ID: 31248253 [TBL] [Abstract][Full Text] [Related]
32. Detection of nanoparticles in Dutch surface waters. Peters RJB; van Bemmel G; Milani NBL; den Hertog GCT; Undas AK; van der Lee M; Bouwmeester H Sci Total Environ; 2018 Apr; 621():210-218. PubMed ID: 29179077 [TBL] [Abstract][Full Text] [Related]
33. Distinguishing Engineered TiO Bland GD; Battifarano M; Pradas Del Real AE; Sarret G; Lowry GV Environ Sci Technol; 2022 Mar; 56(5):2990-3001. PubMed ID: 35133134 [TBL] [Abstract][Full Text] [Related]
34. AF4-UV-ICP-MS for detection and quantification of silver nanoparticles in seafood after enzymatic hydrolysis. Taboada-López MV; Bartczak D; Cuello-Núñez S; Goenaga-Infante H; Bermejo-Barrera P; Moreda-Piñeiro A Talanta; 2021 Sep; 232():122504. PubMed ID: 34074453 [TBL] [Abstract][Full Text] [Related]
35. A Sensitive Single Particle-ICP-MS Method for CeO Liu W; Shi H; Liu K; Liu X; Sahle-Demessie E; Stephan C J Agric Food Chem; 2021 Jan; 69(3):1115-1122. PubMed ID: 33450153 [TBL] [Abstract][Full Text] [Related]
36. Asymmetric Flow-Field Flow Fractionation Hyphenated ICP-MS as an Alternative to Cloud Point Extraction for Quantification of Silver Nanoparticles and Silver Speciation: Application for Nanoparticles with a Protein Corona. Mudalige TK; Qu H; Linder SW Anal Chem; 2015 Jul; 87(14):7395-401. PubMed ID: 26095720 [TBL] [Abstract][Full Text] [Related]
37. Asymmetrical Flow Field-Flow Fractionation Methods for Quantitative Determination and Size Characterization of Thiols and for Mercury Size Speciation Analysis in Organic Matter-Rich Natural Waters. Worms IAM; Kavanagh K; Moulin E; Regier N; Slaveykova VI Front Chem; 2022; 10():800696. PubMed ID: 35252112 [TBL] [Abstract][Full Text] [Related]
38. Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering. Makan AC; Spallek MJ; du Toit M; Klein T; Pasch H J Chromatogr A; 2016 Apr; 1442():94-106. PubMed ID: 26987415 [TBL] [Abstract][Full Text] [Related]
39. Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry. Hoque ME; Khosravi K; Newman K; Metcalfe CD J Chromatogr A; 2012 Apr; 1233():109-15. PubMed ID: 22381889 [TBL] [Abstract][Full Text] [Related]
40. Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine. Badalova K; Herbello-Hermelo P; Bermejo-Barrera P; Moreda-Piñeiro A J Trace Elem Med Biol; 2019 Jul; 54():55-61. PubMed ID: 31109621 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]