These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32008189)

  • 1. Adsorption and reduction of Cr(VI) by hydroxylated multiwalled carbon nanotubes: effects of humic acid and surfactants.
    Huang Y; Song K; Luo W; Yang J
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12746-12754. PubMed ID: 32008189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the cooperative adsorption behavior of Cr(VI) and humic acid in water by powdered activated carbon.
    Chen Y; Qian Y; Ma J; Mao M; Qian L; An D
    Sci Total Environ; 2022 Apr; 817():153081. PubMed ID: 35038541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of multi-wall carbon nanotubes on Cr(VI) reduction by citric acid: Implications for their use in soil remediation.
    Zhang Y; Yang J; Zhong L; Liu L
    Environ Sci Pollut Res Int; 2018 Aug; 25(24):23791-23798. PubMed ID: 29876853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes.
    Hu J; Chen C; Zhu X; Wang X
    J Hazard Mater; 2009 Mar; 162(2-3):1542-50. PubMed ID: 18650001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of TiO2/multiwalled carbon nanotube composites and their applications in photocatalytic reduction of Cr(VI) study.
    Tan X; Fang M; Wang X
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5624-31. PubMed ID: 19198280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant removal with multiwalled carbon nanotubes.
    Gao Q; Chen W; Chen Y; Werner D; Cornelissen G; Xing B; Tao S; Wang X
    Water Res; 2016 Dec; 106():531-538. PubMed ID: 27770729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cr(VI) adsorption and reduction by humic acid coated on magnetite.
    Jiang W; Cai Q; Xu W; Yang M; Cai Y; Dionysiou DD; O'Shea KE
    Environ Sci Technol; 2014 Jul; 48(14):8078-85. PubMed ID: 24901955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant-Wrapped Multiwalled Carbon Nanotubes in Aquatic Systems: Surfactant Displacement in the Presence of Humic Acid.
    Chang X; Bouchard DC
    Environ Sci Technol; 2016 Sep; 50(17):9214-22. PubMed ID: 27500910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution.
    Pillay K; Cukrowska EM; Coville NJ
    J Hazard Mater; 2009 Jul; 166(2-3):1067-75. PubMed ID: 19157694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of anionic, cationic and nonionic surfactants on adsorption and desorption of oxytetracycline by ultrasonically treated and non-treated multiwalled carbon nanotubes.
    Oleszczuk P; Xing B
    Chemosphere; 2011 Nov; 85(8):1312-7. PubMed ID: 21890168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of pH, co-existing ions, ionic strength, and temperature on the adsorption and reduction of hexavalent chromium by undissolved humic acid.
    Barnie S; Zhang J; Wang H; Yin H; Chen H
    Chemosphere; 2018 Dec; 212():209-218. PubMed ID: 30144682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of different functional groups in a novel adsorption-complexation-reduction multi-step kinetic model for hexavalent chromium retention by undissolved humic acid.
    Zhang J; Yin H; Chen L; Liu F; Chen H
    Environ Pollut; 2018 Jun; 237():740-746. PubMed ID: 29126567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing the influence of humic/fulvic acid and tannic acid on Cr(VI) adsorption onto polystyrene microplastics: Evidence for the formation of Cr(OH)
    Li J; Li X; Ma S; Zhao W; Xie W; Ma J; Yao Y; Wei W
    Chemosphere; 2022 Nov; 307(Pt 1):135697. PubMed ID: 35843429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient removal of Chromium(VI) from wastewater based on magnetic multiwalled carbon nanotubes coupled with deep eutectic solvents.
    Wang L; Zhu Y; Ma L; Hai X; Li X; Yang Z; Gao Y; Yuan M; Xiong H; Chen M; Ma X
    Chemosphere; 2024 Aug; 362():142732. PubMed ID: 38950746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutual effects of Pb(II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions.
    Yang S; Hu J; Chen C; Shao D; Wang X
    Environ Sci Technol; 2011 Apr; 45(8):3621-7. PubMed ID: 21395259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mechanism of Cr( VI) removal from aqueous solution using biochar promoted by humic acid].
    Ding WC; Tian XM; Wang DY; Zeng XL; Xu Q; Chen JK; Ai XY
    Huan Jing Ke Xue; 2012 Nov; 33(11):3847-53. PubMed ID: 23323415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous capture of methyl orange and chromium(vi) from complex wastewater using polyethylenimine cation decorated magnetic carbon nanotubes as a recyclable adsorbent.
    Chen B; Yue W; Zhao H; Long F; Cao Y; Pan X
    RSC Adv; 2019 Feb; 9(9):4722-4734. PubMed ID: 35514632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of Cr(VI) and humic acid by using TiO2 photocatalysis.
    Yang JK; Lee SM
    Chemosphere; 2006 Jun; 63(10):1677-84. PubMed ID: 16325231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of Cr (VI) onto micro- and nanoparticles of palygorskite in aqueous solutions: Effects of pH and humic acid.
    Rouhaninezhad AA; Hojati S; Masir MN
    Ecotoxicol Environ Saf; 2020 Dec; 206():111247. PubMed ID: 32890920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi wall carbon nanotubes application for treatment of Cr(VI)-contaminated groundwater; Modeling of batch & column experiments.
    Mpouras T; Polydera A; Dermatas D; Verdone N; Vilardi G
    Chemosphere; 2021 Apr; 269():128749. PubMed ID: 33272668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.