BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3200830)

  • 1. Hydrogen burst associated with nitrogenase-catalyzed reactions.
    Liang J; Burris RH
    Proc Natl Acad Sci U S A; 1988 Dec; 85(24):9446-50. PubMed ID: 3200830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of magnesium adenosine 5'-triphosphate in the hydrogen evolution reaction catalyzed by nitrogenase from Azotobacter vinelandii.
    Hageman RV; Orme-Johnson WH; Burris RH
    Biochemistry; 1980 May; 19(11):2333-42. PubMed ID: 6930302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in the EPR signal of dinitrogenase from Azotobacter vinelandii during the lag period before hydrogen evolution begins.
    Hageman RV; Burris RH
    J Biol Chem; 1979 Nov; 254(22):11189-92. PubMed ID: 227860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase.
    Dilworth MJ; Fisher K; Kim CH; Newton WE
    Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diastereomer-dependent substrate reduction properties of a dinitrogenase containing 1-fluorohomocitrate in the iron-molybdenum cofactor.
    Madden MS; Kindon ND; Ludden PW; Shah VK
    Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6517-21. PubMed ID: 2204057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N2O reduction and HD formation by nitrogenase from a nifV mutant of Klebsiella pneumoniae.
    Liang J; Burris RH
    J Bacteriol; 1989 Jun; 171(6):3176-80. PubMed ID: 2656643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Energy and Electron Availability on
    Zheng Y; Harwood CS
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plausible structure of the iron-molybdenum cofactor of nitrogenase.
    Madden MS; Krezel AM; Allen RM; Ludden PW; Shah VK
    Proc Natl Acad Sci U S A; 1992 Jul; 89(14):6487-91. PubMed ID: 1631147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hydrogen cycle in nitrogen-fixing Azotobacter chroococcum.
    Walker CC; Yates MG
    Biochimie; 1978; 60(3):225-31. PubMed ID: 667178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogenase. VII. Effect of component ratio, ATP and H2 on the distribution of electrons to alternative substrates.
    Davis LC; Shah VK; Brill WJ
    Biochim Biophys Acta; 1975 Sep; 403(1):67-78. PubMed ID: 1174550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of nitrogenase-catalyzed NH3 formation by H2.
    Guth JH; Burris RH
    Biochemistry; 1983 Oct; 22(22):5111-22. PubMed ID: 6360203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of Nitrogenase H
    Khadka N; Milton RD; Shaw S; Lukoyanov D; Dean DR; Minteer SD; Raugei S; Hoffman BM; Seefeldt LC
    J Am Chem Soc; 2017 Sep; 139(38):13518-13524. PubMed ID: 28851217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogenases from Klebsiella pneumoniae and Clostridium pasteurianum. Kinetic investigations of cross-reactions as a probe of the enzyme mechanism.
    Smith BE; Thorneley RN; Eady RR; Mortenson LE
    Biochem J; 1976 Aug; 157(2):439-47. PubMed ID: 134700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogenase of Klebsiella pneumoniae. Distinction between proton-reducing and acetylene-reducing forms of the enzyme: effect of temperature and component protein ratio on substrate-reduction kinetics.
    Thorneley RN; Eady RR
    Biochem J; 1977 Nov; 167(2):457-61. PubMed ID: 339912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogenase reactivity: insight into the nitrogen-fixing process through hydrogen-inhibition and HD-forming reactions.
    Burgess BK; Wherland S; Newton WE; Stiefel EI
    Biochemistry; 1981 Sep; 20(18):5140-6. PubMed ID: 6945872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a key catalytic intermediate demonstrates that nitrogenase is activated by the reversible exchange of N₂ for H₂.
    Lukoyanov D; Yang ZY; Khadka N; Dean DR; Seefeldt LC; Hoffman BM
    J Am Chem Soc; 2015 Mar; 137(10):3610-5. PubMed ID: 25741750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MgATP-independent hydrogen evolution catalysed by nitrogenase: an explanation for the missing electron(s) in the MgADP-AlF4 transition-state complex.
    Yousafzai FK; Eady RR
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):511-5. PubMed ID: 10215587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molybdenum and vanadium nitrogenases of Azotobacter chroococcum: effect of elevated temperature on N2 reduction.
    Dilworth MJ; Eldridge ME; Eady RR
    Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):395-400. PubMed ID: 8424785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase.
    Ribbe M; Gadkari D; Meyer O
    J Biol Chem; 1997 Oct; 272(42):26627-33. PubMed ID: 9334244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molybdenum-independent nitrogenases of Azotobacter vinelandii: a functional species of alternative nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor.
    Pau RN; Eldridge ME; Lowe DJ; Mitchenall LA; Eady RR
    Biochem J; 1993 Jul; 293 ( Pt 1)(Pt 1):101-7. PubMed ID: 8392330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.