These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 3200830)
1. Hydrogen burst associated with nitrogenase-catalyzed reactions. Liang J; Burris RH Proc Natl Acad Sci U S A; 1988 Dec; 85(24):9446-50. PubMed ID: 3200830 [TBL] [Abstract][Full Text] [Related]
2. Role of magnesium adenosine 5'-triphosphate in the hydrogen evolution reaction catalyzed by nitrogenase from Azotobacter vinelandii. Hageman RV; Orme-Johnson WH; Burris RH Biochemistry; 1980 May; 19(11):2333-42. PubMed ID: 6930302 [TBL] [Abstract][Full Text] [Related]
3. Changes in the EPR signal of dinitrogenase from Azotobacter vinelandii during the lag period before hydrogen evolution begins. Hageman RV; Burris RH J Biol Chem; 1979 Nov; 254(22):11189-92. PubMed ID: 227860 [TBL] [Abstract][Full Text] [Related]
4. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase. Dilworth MJ; Fisher K; Kim CH; Newton WE Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864 [TBL] [Abstract][Full Text] [Related]
5. Diastereomer-dependent substrate reduction properties of a dinitrogenase containing 1-fluorohomocitrate in the iron-molybdenum cofactor. Madden MS; Kindon ND; Ludden PW; Shah VK Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6517-21. PubMed ID: 2204057 [TBL] [Abstract][Full Text] [Related]
6. N2O reduction and HD formation by nitrogenase from a nifV mutant of Klebsiella pneumoniae. Liang J; Burris RH J Bacteriol; 1989 Jun; 171(6):3176-80. PubMed ID: 2656643 [TBL] [Abstract][Full Text] [Related]
7. Influence of Energy and Electron Availability on Zheng Y; Harwood CS Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824440 [TBL] [Abstract][Full Text] [Related]
8. Plausible structure of the iron-molybdenum cofactor of nitrogenase. Madden MS; Krezel AM; Allen RM; Ludden PW; Shah VK Proc Natl Acad Sci U S A; 1992 Jul; 89(14):6487-91. PubMed ID: 1631147 [TBL] [Abstract][Full Text] [Related]
10. Nitrogenase. VII. Effect of component ratio, ATP and H2 on the distribution of electrons to alternative substrates. Davis LC; Shah VK; Brill WJ Biochim Biophys Acta; 1975 Sep; 403(1):67-78. PubMed ID: 1174550 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of Nitrogenase H Khadka N; Milton RD; Shaw S; Lukoyanov D; Dean DR; Minteer SD; Raugei S; Hoffman BM; Seefeldt LC J Am Chem Soc; 2017 Sep; 139(38):13518-13524. PubMed ID: 28851217 [TBL] [Abstract][Full Text] [Related]
13. Nitrogenases from Klebsiella pneumoniae and Clostridium pasteurianum. Kinetic investigations of cross-reactions as a probe of the enzyme mechanism. Smith BE; Thorneley RN; Eady RR; Mortenson LE Biochem J; 1976 Aug; 157(2):439-47. PubMed ID: 134700 [TBL] [Abstract][Full Text] [Related]
14. Nitrogenase of Klebsiella pneumoniae. Distinction between proton-reducing and acetylene-reducing forms of the enzyme: effect of temperature and component protein ratio on substrate-reduction kinetics. Thorneley RN; Eady RR Biochem J; 1977 Nov; 167(2):457-61. PubMed ID: 339912 [TBL] [Abstract][Full Text] [Related]
15. Nitrogenase reactivity: insight into the nitrogen-fixing process through hydrogen-inhibition and HD-forming reactions. Burgess BK; Wherland S; Newton WE; Stiefel EI Biochemistry; 1981 Sep; 20(18):5140-6. PubMed ID: 6945872 [TBL] [Abstract][Full Text] [Related]
16. Identification of a key catalytic intermediate demonstrates that nitrogenase is activated by the reversible exchange of N₂ for H₂. Lukoyanov D; Yang ZY; Khadka N; Dean DR; Seefeldt LC; Hoffman BM J Am Chem Soc; 2015 Mar; 137(10):3610-5. PubMed ID: 25741750 [TBL] [Abstract][Full Text] [Related]
17. MgATP-independent hydrogen evolution catalysed by nitrogenase: an explanation for the missing electron(s) in the MgADP-AlF4 transition-state complex. Yousafzai FK; Eady RR Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):511-5. PubMed ID: 10215587 [TBL] [Abstract][Full Text] [Related]
18. The molybdenum and vanadium nitrogenases of Azotobacter chroococcum: effect of elevated temperature on N2 reduction. Dilworth MJ; Eldridge ME; Eady RR Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):395-400. PubMed ID: 8424785 [TBL] [Abstract][Full Text] [Related]
19. N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase. Ribbe M; Gadkari D; Meyer O J Biol Chem; 1997 Oct; 272(42):26627-33. PubMed ID: 9334244 [TBL] [Abstract][Full Text] [Related]
20. Molybdenum-independent nitrogenases of Azotobacter vinelandii: a functional species of alternative nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor. Pau RN; Eldridge ME; Lowe DJ; Mitchenall LA; Eady RR Biochem J; 1993 Jul; 293 ( Pt 1)(Pt 1):101-7. PubMed ID: 8392330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]