These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3200830)

  • 21. The mechanism of Klebsiella pneumoniae nitrogenase action. Pre-steady-state kinetics of H2 formation.
    Lowe DJ; Thorneley RN
    Biochem J; 1984 Dec; 224(3):877-86. PubMed ID: 6395861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. N2O as a substrate and as a competitive inhibitor of nitrogenase.
    Jensen BB; Burris RH
    Biochemistry; 1986 Mar; 25(5):1083-8. PubMed ID: 3516213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energetics of biological nitrogen fixation: determination of the ratio of formation of H2 to NH4+ catalysed by nitrogenase of Klebsiella pneumoniae in vivo.
    Andersen K; Shanmugam KT
    J Gen Microbiol; 1977 Nov; 103(1):107-22. PubMed ID: 22579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Critical E
    Rohde M; Sippel D; Trncik C; Andrade SLA; Einsle O
    Biochemistry; 2018 Sep; 57(38):5497-5504. PubMed ID: 29965738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanism of Klebsiella pneumoniae nitrogenase action. Pre-steady-state kinetics of an enzyme-bound intermediate in N2 reduction and of NH3 formation.
    Thorneley RN; Lowe DJ
    Biochem J; 1984 Dec; 224(3):887-94. PubMed ID: 6395862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlled protonation of iron-molybdenum cofactor by nitrogenase: a structural and theoretical analysis.
    Durrant MC
    Biochem J; 2001 May; 355(Pt 3):569-76. PubMed ID: 11311117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characteristics of N2 fixation in Mo-limited batch and continuous cultures of Azotobacter vinelandii.
    Eady RR; Robson RL
    Biochem J; 1984 Dec; 224(3):853-62. PubMed ID: 6596950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A model of nitrogenase active-centre and mechanism of nitrogenase catalysis.
    Sci Sin; 1976; 19(4):460-74. PubMed ID: 982022
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and mechanism of catalytic action of active sites of nitrogenase.
    Likhtenshtein GI; Gvozdev RI; Levchenko LA; Syrtsova LA
    Biol Bull Acad Sci USSR; 1978; 5(2):125-42. PubMed ID: 154348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural characterization of the nitrogenase molybdenum-iron protein with the substrate acetylene trapped near the active site.
    Keable SM; Vertemara J; Zadvornyy OA; Eilers BJ; Danyal K; Rasmussen AJ; De Gioia L; Zampella G; Seefeldt LC; Peters JW
    J Inorg Biochem; 2018 Mar; 180():129-134. PubMed ID: 29275221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The vanadium nitrogenase of Azotobacter chroococcum. Reduction of acetylene and ethylene to ethane.
    Dilworth MJ; Eady RR; Eldridge ME
    Biochem J; 1988 Feb; 249(3):745-51. PubMed ID: 3162672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Another role for CO with nitrogenase? CO stimulates hydrogen evolution catalyzed by variant Azotobacter vinelandii Mo-nitrogenases.
    Fisher K; Hare ND; Newton WE
    Biochemistry; 2014 Oct; 53(39):6151-60. PubMed ID: 25203280
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement in vivo of hydrogenase-catalysed hydrogen evolution in the presence of nitrogenase enzyme in cyanobacteria.
    Daday A; Lambert GR; Smith GD
    Biochem J; 1979 Jan; 177(1):139-44. PubMed ID: 106842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of a tungsten-substituted nitrogenase isolated from Rhodobacter capsulatus.
    Siemann S; Schneider K; Oley M; Müller A
    Biochemistry; 2003 Apr; 42(13):3846-57. PubMed ID: 12667075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Connecting nitrogenase intermediates with the kinetic scheme for N2 reduction by a relaxation protocol and identification of the N2 binding state.
    Lukoyanov D; Barney BM; Dean DR; Seefeldt LC; Hoffman BM
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1451-5. PubMed ID: 17251348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of the V factor needed for synthesis of the iron-molybdenum cofactor of nitrogenase as homocitrate.
    Hoover TR; Robertson AD; Cerny RL; Hayes RN; Imperial J; Shah VK; Ludden PW
    Nature; 1987 Oct 29-Nov 4; 329(6142):855-7. PubMed ID: 3313054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substrate reduction properties of dinitrogenase activated in vitro are dependent upon the presence of homocitrate or its analogues during iron-molybdenum cofactor synthesis.
    Imperial J; Hoover TR; Madden MS; Ludden PW; Shah VK
    Biochemistry; 1989 Sep; 28(19):7796-9. PubMed ID: 2514794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Klebsiella pneumoniae nitrogenase. The pre-steady-state kinetics of MoFe-protein reduction and hydrogen evolution under conditions of limiting electron flux show that the rates of association with the Fe-protein and electron transfer are independent of the oxidation level of the MoFe-protein.
    Fisher K; Lowe DJ; Thorneley RN
    Biochem J; 1991 Oct; 279 ( Pt 1)(Pt 1):81-5. PubMed ID: 1656943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diazene (HN=NH) is a substrate for nitrogenase: insights into the pathway of N2 reduction.
    Barney BM; McClead J; Lukoyanov D; Laryukhin M; Yang TC; Dean DR; Hoffman BM; Seefeldt LC
    Biochemistry; 2007 Jun; 46(23):6784-94. PubMed ID: 17508723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molybdenum and vanadium nitrogenases of Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium nitrogenase.
    Miller RW; Eady RR
    Biochem J; 1988 Dec; 256(2):429-32. PubMed ID: 3223922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.