BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

562 related articles for article (PubMed ID: 32008376)

  • 1. Inhibiting the Activity of NADPH Oxidase in Cancer.
    Konaté MM; Antony S; Doroshow JH
    Antioxid Redox Signal; 2020 Aug; 33(6):435-454. PubMed ID: 32008376
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization of potent and selective iodonium-class inhibitors of NADPH oxidases.
    Lu J; Risbood P; Kane CT; Hossain MT; Anderson L; Hill K; Monks A; Wu Y; Antony S; Juhasz A; Liu H; Jiang G; Harris E; Roy K; Meitzler JL; Konaté M; Doroshow JH
    Biochem Pharmacol; 2017 Nov; 143():25-38. PubMed ID: 28709950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADPH Oxidases NOXs and DUOXs as putative targets for cancer therapy.
    Weyemi U; Redon CE; Parekh PR; Dupuy C; Bonner WM
    Anticancer Agents Med Chem; 2013 Mar; 13(3):502-14. PubMed ID: 22931418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular insights of NADPH oxidases and its pathological consequences.
    Waghela BN; Vaidya FU; Agrawal Y; Santra MK; Mishra V; Pathak C
    Cell Biochem Funct; 2021 Mar; 39(2):218-234. PubMed ID: 32975319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement.
    Altenhöfer S; Radermacher KA; Kleikers PW; Wingler K; Schmidt HH
    Antioxid Redox Signal; 2015 Aug; 23(5):406-27. PubMed ID: 24383718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological characterization of the seven human NOX isoforms and their inhibitors.
    Augsburger F; Filippova A; Rasti D; Seredenina T; Lam M; Maghzal G; Mahiout Z; Jansen-Dürr P; Knaus UG; Doroshow J; Stocker R; Krause KH; Jaquet V
    Redox Biol; 2019 Sep; 26():101272. PubMed ID: 31330481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The NADPH Oxidase Family and Its Inhibitors.
    Chocry M; Leloup L
    Antioxid Redox Signal; 2020 Aug; 33(5):332-353. PubMed ID: 31826639
    [No Abstract]   [Full Text] [Related]  

  • 8. NADPH Oxidase Inhibition: Preclinical and Clinical Studies in Diabetic Complications.
    Urner S; Ho F; Jha JC; Ziegler D; Jandeleit-Dahm K
    Antioxid Redox Signal; 2020 Aug; 33(6):415-434. PubMed ID: 32008354
    [No Abstract]   [Full Text] [Related]  

  • 9. Current status of NADPH oxidase research in cardiovascular pharmacology.
    Rodiño-Janeiro BK; Paradela-Dobarro B; Castiñeiras-Landeira MI; Raposeiras-Roubín S; González-Juanatey JR; Alvarez E
    Vasc Health Risk Manag; 2013; 9():401-28. PubMed ID: 23983473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADPH Oxidase Inhibition in Fibrotic Pathologies.
    Bernard K; Thannickal VJ
    Antioxid Redox Signal; 2020 Aug; 33(6):455-479. PubMed ID: 32129665
    [No Abstract]   [Full Text] [Related]  

  • 11. NADPH oxidase inhibitors: a decade of discovery from Nox2ds to HTS.
    Cifuentes-Pagano E; Csanyi G; Pagano PJ
    Cell Mol Life Sci; 2012 Jul; 69(14):2315-25. PubMed ID: 22585059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiproliferative mechanisms of action of the flavin dehydrogenase inhibitors diphenylene iodonium and di-2-thienyliodonium based on molecular profiling of the NCI-60 human tumor cell panel.
    Doroshow JH; Juhasz A; Ge Y; Holbeck S; Lu J; Antony S; Wu Y; Jiang G; Roy K
    Biochem Pharmacol; 2012 May; 83(9):1195-207. PubMed ID: 22305747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The NOX Family of Proteins Is Also Present in Bacteria.
    Hajjar C; Cherrier MV; Dias Mirandela G; Petit-Hartlein I; Stasia MJ; Fontecilla-Camps JC; Fieschi F; Dupuy J
    mBio; 2017 Nov; 8(6):. PubMed ID: 29114025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular Biology of Superoxide-Generating NADPH Oxidase 5-Implications in Hypertension and Cardiovascular Disease.
    Touyz RM; Anagnostopoulou A; Camargo LL; Rios FJ; Montezano AC
    Antioxid Redox Signal; 2019 Mar; 30(7):1027-1040. PubMed ID: 30334629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Neurodegenerative Diseases: Mechanisms and Therapy.
    Hou L; Zhang L; Hong JS; Zhang D; Zhao J; Wang Q
    Antioxid Redox Signal; 2020 Aug; 33(5):374-393. PubMed ID: 31968994
    [No Abstract]   [Full Text] [Related]  

  • 16. New insights on NOX enzymes in the central nervous system.
    Nayernia Z; Jaquet V; Krause KH
    Antioxid Redox Signal; 2014 Jun; 20(17):2815-37. PubMed ID: 24206089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The NOX toolbox: validating the role of NADPH oxidases in physiology and disease.
    Altenhöfer S; Kleikers PW; Radermacher KA; Scheurer P; Rob Hermans JJ; Schiffers P; Ho H; Wingler K; Schmidt HH
    Cell Mol Life Sci; 2012 Jul; 69(14):2327-43. PubMed ID: 22648375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The quest for selective nox inhibitors and therapeutics: challenges, triumphs and pitfalls.
    Cifuentes-Pagano E; Meijles DN; Pagano PJ
    Antioxid Redox Signal; 2014 Jun; 20(17):2741-54. PubMed ID: 24070014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nox, Nox, Are You There? The Role of NADPH Oxidases in the Peripheral Nervous System.
    Eid SA; Savelieff MG; Eid AA; Feldman EL
    Antioxid Redox Signal; 2022 Sep; 37(7-9):613-630. PubMed ID: 34861780
    [No Abstract]   [Full Text] [Related]  

  • 20. An Elegant Four-Helical Fold in NOX and STEAP Enzymes Facilitates Electron Transport across Biomembranes-Similar Vehicle, Different Destination.
    Oosterheert W; Reis J; Gros P; Mattevi A
    Acc Chem Res; 2020 Sep; 53(9):1969-1980. PubMed ID: 32815713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.