These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 32008524)
1. Analysis of Abdominal Computed Tomography Images for Automatic Liver Cancer Diagnosis Using Image Processing Algorithm. Khan AA; Narejo GB Curr Med Imaging Rev; 2019; 15(10):972-982. PubMed ID: 32008524 [TBL] [Abstract][Full Text] [Related]
2. Computer-aided diagnosis of cirrhosis and hepatocellular carcinoma using multi-phase abdomen CT. Nayak A; Baidya Kayal E; Arya M; Culli J; Krishan S; Agarwal S; Mehndiratta A Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1341-1352. PubMed ID: 31062266 [TBL] [Abstract][Full Text] [Related]
3. A mathematical theory of shape and neuro-fuzzy methodology-based diagnostic analysis: a comparative study on early detection and treatment planning of brain cancer. Kar S; Majumder DD Int J Clin Oncol; 2017 Aug; 22(4):667-681. PubMed ID: 28321787 [TBL] [Abstract][Full Text] [Related]
4. A novel extended Kalman filter with support vector machine based method for the automatic diagnosis and segmentation of brain tumors. Chen B; Zhang L; Chen H; Liang K; Chen X Comput Methods Programs Biomed; 2021 Mar; 200():105797. PubMed ID: 33317871 [TBL] [Abstract][Full Text] [Related]
5. Segmentation and Diagnosis of Liver Carcinoma Based on Adaptive Scale-Kernel Fuzzy Clustering Model for CT Images. Cai J J Med Syst; 2019 Oct; 43(11):322. PubMed ID: 31602537 [TBL] [Abstract][Full Text] [Related]
6. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images. Wang J; Cheng Y; Guo C; Wang Y; Tamura S Int J Comput Assist Radiol Surg; 2016 May; 11(5):817-26. PubMed ID: 26646416 [TBL] [Abstract][Full Text] [Related]
7. ECM-CSD: An Efficient Classification Model for Cancer Stage Diagnosis in CT Lung Images Using FCM and SVM Techniques. Kavitha MS; Shanthini J; Sabitha R J Med Syst; 2019 Feb; 43(3):73. PubMed ID: 30746555 [TBL] [Abstract][Full Text] [Related]
8. The Influence of Different Segmentation Methods on the Extraction of Imaging Histological Features of Hepatocellular Carcinoma CT. Zhao S; Ren W; Zhuang Y; Wang Z J Med Syst; 2019 Mar; 43(4):101. PubMed ID: 30874911 [TBL] [Abstract][Full Text] [Related]
9. MRI Brain Tumour Segmentation Using Hybrid Clustering and Classification by Back Propagation Algorithm. M M; P S Asian Pac J Cancer Prev; 2018 Nov; 19(11):3257-3263. PubMed ID: 30486629 [TBL] [Abstract][Full Text] [Related]
10. Lung Cancer Detection Using Fuzzy Auto-Seed Cluster Means Morphological Segmentation and SVM Classifier. Manikandan T; Bharathi N J Med Syst; 2016 Jul; 40(7):181. PubMed ID: 27299354 [TBL] [Abstract][Full Text] [Related]
11. An Efficient Segmentation and Classification System in Medical Images Using Intuitionist Possibilistic Fuzzy C-Mean Clustering and Fuzzy SVM Algorithm. Chowdhary CL; Mittal M; P K; Pattanaik PA; Marszalek Z Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32668793 [TBL] [Abstract][Full Text] [Related]
12. Liver tissue segmentation in multiphase CT scans using cascaded convolutional neural networks. Ouhmich F; Agnus V; Noblet V; Heitz F; Pessaux P Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1275-1284. PubMed ID: 31041697 [TBL] [Abstract][Full Text] [Related]
13. Lung Lesion Detection in CT Scan Images Using the Fuzzy Local Information Cluster Means (FLICM) Automatic Segmentation Algorithm and Back Propagation Network Classification. Lavanya M; Kannan PM Asian Pac J Cancer Prev; 2017 Dec; 18(12):3395-3399. PubMed ID: 29286609 [TBL] [Abstract][Full Text] [Related]
14. Brain tumor segmentation approach based on the extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms running on Raspberry Pi hardware. Şişik F; Sert E Med Hypotheses; 2020 Mar; 136():109507. PubMed ID: 31812927 [TBL] [Abstract][Full Text] [Related]
15. An improved fuzzy-differential evolution approach applied to classification of tumors in liver CT scan images. AmirHosseini B; Hosseini R Med Biol Eng Comput; 2019 Oct; 57(10):2277-2287. PubMed ID: 31418157 [TBL] [Abstract][Full Text] [Related]
17. Using a single abdominal computed tomography image to differentiate five contrast-enhancement phases: A machine-learning algorithm for radiomics-based precision medicine. Dercle L; Ma J; Xie C; Chen AP; Wang D; Luk L; Revel-Mouroz P; Otal P; Peron JM; Rousseau H; Lu L; Schwartz LH; Mokrane FZ; Zhao B Eur J Radiol; 2020 Apr; 125():108850. PubMed ID: 32070870 [TBL] [Abstract][Full Text] [Related]
18. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours. Li D; Liu L; Chen J; Li H; Yin Y; Ibragimov B; Xing L Phys Med Biol; 2017 Jan; 62(1):272-288. PubMed ID: 27991439 [TBL] [Abstract][Full Text] [Related]
19. Focal liver lesions segmentation and classification in nonenhanced T2-weighted MRI. Gatos I; Tsantis S; Karamesini M; Spiliopoulos S; Karnabatidis D; Hazle JD; Kagadis GC Med Phys; 2017 Jul; 44(7):3695-3705. PubMed ID: 28432822 [TBL] [Abstract][Full Text] [Related]
20. Liver tumor segmentation based on 3D convolutional neural network with dual scale. Meng L; Tian Y; Bu S J Appl Clin Med Phys; 2020 Jan; 21(1):144-157. PubMed ID: 31793212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]