These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32008525)

  • 1. Carpal Bone Segmentation Using Fully Convolutional Neural Network.
    Meng LK; Khalil A; Ahmad Nizar MH; Nisham MK; Pingguan-Murphy B; Hum YC; Mohamad Salim MI; Lai KW
    Curr Med Imaging Rev; 2019; 15(10):983-989. PubMed ID: 32008525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal bone age assessments for young children based on regression convolutional neural networks.
    Hao PY; Chokuwa S; Xie XH; Wu FL; Wu J; Bai C
    Math Biosci Eng; 2019 Jul; 16(6):6454-6466. PubMed ID: 31698572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic bone age assessment based on intelligent algorithms and comparison with TW3 method.
    Liu J; Qi J; Liu Z; Ning Q; Luo X
    Comput Med Imaging Graph; 2008 Dec; 32(8):678-84. PubMed ID: 18835130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic bone age assessment for young children from newborn to 7-year-old using carpal bones.
    Zhang A; Gertych A; Liu BJ
    Comput Med Imaging Graph; 2007; 31(4-5):299-310. PubMed ID: 17369018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone age assessment in young children using automatic carpal bone feature extraction and support vector regression.
    Somkantha K; Theera-Umpon N; Auephanwiriyakul S
    J Digit Imaging; 2011 Dec; 24(6):1044-58. PubMed ID: 21347746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporated region detection and classification using deep convolutional networks for bone age assessment.
    Bui TD; Lee JJ; Shin J
    Artif Intell Med; 2019 Jun; 97():1-8. PubMed ID: 31202395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning for automated skeletal bone age assessment in X-ray images.
    Spampinato C; Palazzo S; Giordano D; Aldinucci M; Leonardi R
    Med Image Anal; 2017 Feb; 36():41-51. PubMed ID: 27816861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WRIST: A WRist Image Segmentation Toolkit for carpal bone delineation from MRI.
    Foster B; Joshi AA; Borgese M; Abdelhafez Y; Boutin RD; Chaudhari AJ
    Comput Med Imaging Graph; 2018 Jan; 63():31-40. PubMed ID: 29331208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation.
    Wang B; Lei Y; Tian S; Wang T; Liu Y; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X
    Med Phys; 2019 Apr; 46(4):1707-1718. PubMed ID: 30702759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a Computer-Aided Diagnosis System for Automated Bone Age Assessment in Comparison to the Greulich-Pyle Atlas Method: A Multireader Study.
    Booz C; Wichmann JL; Boettger S; Al Kamali A; Martin SS; Lenga L; Leithner D; Albrecht MH; Ackermann H; Vogl TJ; Bodelle B; Kaltenbach B
    J Comput Assist Tomogr; 2019; 43(1):39-45. PubMed ID: 30119064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone age assessment: Large-scale comparison of Greulich-Pyle method and Tanner-Whitehouse 3 method for Taiwanese children.
    Yuh YS; Chou TY; Tung TH
    J Chin Med Assoc; 2023 Feb; 86(2):246-253. PubMed ID: 36652571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical Validation of a Deep Learning-Based Hybrid (Greulich-Pyle and Modified Tanner-Whitehouse) Method for Bone Age Assessment.
    Lee KC; Lee KH; Kang CH; Ahn KS; Chung LY; Lee JJ; Hong SJ; Kim BH; Shim E
    Korean J Radiol; 2021 Dec; 22(12):2017-2025. PubMed ID: 34668353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fuzzy-based growth model with principle component analysis selection for carpal bone-age assessment.
    Hsieh CW; Liu TC; Jong TL; Tiu CM
    Med Biol Eng Comput; 2010 Jun; 48(6):579-88. PubMed ID: 20405228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age estimation methods using hand and wrist radiographs in a group of contemporary Thais.
    Benjavongkulchai S; Pittayapat P
    Forensic Sci Int; 2018 Jun; 287():218.e1-218.e8. PubMed ID: 29685770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Deep Automated Skeletal Bone Age Assessment Model with Heterogeneous Features Learning.
    Tong C; Liang B; Li J; Zheng Z
    J Med Syst; 2018 Nov; 42(12):249. PubMed ID: 30390162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Traditional and New Methods of Bone Age Assessment-An Overview.
    Prokop-Piotrkowska M; Marszałek-Dziuba K; Moszczyńska E; Szalecki M; Jurkiewicz E
    J Clin Res Pediatr Endocrinol; 2021 Aug; 13(3):251-262. PubMed ID: 33099993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Racial differences in growth patterns of children assessed on the basis of bone age.
    Zhang A; Sayre JW; Vachon L; Liu BJ; Huang HK
    Radiology; 2009 Jan; 250(1):228-35. PubMed ID: 18955510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture.
    Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z
    Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.