These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32008806)

  • 21. Experimental validation of a voxel-based finite element model simulating femoroplasty of lytic lesions in the proximal femur.
    Sas A; Sermon A; van Lenthe GH
    Sci Rep; 2022 May; 12(1):7602. PubMed ID: 35534595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Finite element modeling of resurfacing hip prosthesis: estimation of accuracy through experimental validation.
    Taddei F; Martelli S; Gill HS; Cristofolini L; Viceconti M
    J Biomech Eng; 2010 Feb; 132(2):021002. PubMed ID: 20370239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated segmentation of cortical and trabecular bone to generate finite element models for femoral bone mechanics.
    Väänänen SP; Grassi L; Venäläinen MS; Matikka H; Zheng Y; Jurvelin JS; Isaksson H
    Med Eng Phys; 2019 Aug; 70():19-28. PubMed ID: 31280927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-contact strain measurement in the mouse forearm loading model using digital image correlation (DIC).
    Begonia MT; Dallas M; Vizcarra B; Liu Y; Johnson ML; Thiagarajan G
    Bone; 2015 Dec; 81():593-601. PubMed ID: 26388521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental validation of finite element models of intact and implanted composite hemipelvises using digital image correlation.
    Ghosh R; Gupta S; Dickinson A; Browne M
    J Biomech Eng; 2012 Aug; 134(8):081003. PubMed ID: 22938356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative analysis of the biomechanical behavior of two different design metaphyseal-fitting short stems using digital image correlation.
    Tatani I; Megas P; Panagopoulos A; Diamantakos I; Nanopoulos P; Pantelakis S
    Biomed Eng Online; 2020 Aug; 19(1):65. PubMed ID: 32814586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Vivo Assessment of Age- and Loading Configuration-Related Changes in Multiscale Mechanical Behavior of the Human Proximal Femur Using MRI-Based Finite Element Analysis.
    Zhang L; Wang L; Fu R; Wang J; Yang D; Liu Y; Zhang W; Liang W; Yang R; Yang H; Cheng X
    J Magn Reson Imaging; 2021 Mar; 53(3):905-912. PubMed ID: 33075178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of femoral strength using 3D finite element models reconstructed from DXA images: validation against experiments.
    Grassi L; Väänänen SP; Ristinmaa M; Jurvelin JS; Isaksson H
    Biomech Model Mechanobiol; 2017 Jun; 16(3):989-1000. PubMed ID: 28004226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments.
    Yosibash Z; Padan R; Joskowicz L; Milgrom C
    J Biomech Eng; 2007 Jun; 129(3):297-309. PubMed ID: 17536896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of non-invasive assessments of strength of the proximal femur.
    Johannesdottir F; Thrall E; Muller J; Keaveny TM; Kopperdahl DL; Bouxsein ML
    Bone; 2017 Dec; 105():93-102. PubMed ID: 28739416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward verified and validated FE simulations of a femur with a cemented hip prosthesis.
    Yosibash Z; Katz A; Milgrom C
    Med Eng Phys; 2013 Jul; 35(7):978-87. PubMed ID: 23040050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of specimen-specific vertebral body finite element models with experimental digital image correlation measurements.
    Gustafson HM; Cripton PA; Ferguson SJ; Helgason B
    J Mech Behav Biomed Mater; 2017 Jan; 65():801-807. PubMed ID: 27776322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validation of subject-specific automated p-FE analysis of the proximal femur.
    Trabelsi N; Yosibash Z; Milgrom C
    J Biomech; 2009 Feb; 42(3):234-41. PubMed ID: 19118831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study of the variations of fall induced hip fracture risk between right and left femurs using CT-based FEA.
    Faisal TR; Luo Y
    Biomed Eng Online; 2017 Oct; 16(1):116. PubMed ID: 28974207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of foramina on femoral neck fractures and strains predicted with finite element analysis.
    Kok J; Odin K; Rokkones S; Grassi L; Isaksson H
    J Mech Behav Biomed Mater; 2022 Oct; 134():105364. PubMed ID: 35917637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Damage Identification on Vertebral Bodies During Compressive Loading Using Digital Image Correlation.
    Gustafson HM; Melnyk AD; Siegmund GP; Cripton PA
    Spine (Phila Pa 1976); 2017 Nov; 42(22):E1289-E1296. PubMed ID: 28306642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental evaluation of new concepts in hip arthroplasty.
    Wik TS
    Acta Orthop Suppl; 2012 Apr; 83(345):1-26. PubMed ID: 22489909
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determinants of fracture type in the proximal femur: Biomechanical study of fresh frozen cadavers and finite element models.
    Yano S; Matsuura Y; Hagiwara S; Nakamura J; Kawarai Y; Suzuki T; Kanno K; Shoda J; Tsurumi Y; Ohtori S
    Bone; 2022 May; 158():116352. PubMed ID: 35181576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.