These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32008861)

  • 1. Optimization of alginate bead size immobilized with Chlorella vulgaris and Chlamydomonas reinhardtii for nutrient removal.
    Lee H; Jeong D; Im S; Jang A
    Bioresour Technol; 2020 Apr; 302():122891. PubMed ID: 32008861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of wastewater reverse osmosis concentrate using alginate-immobilised microalgae: Integrated impact of solution conditions on algal bead performance.
    Mohseni A; Kube M; Fan L; Roddick FA
    Chemosphere; 2021 Aug; 276():130028. PubMed ID: 33690032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment.
    Cruz I; Bashan Y; Hernàndez-Carmona G; de-Bashan LE
    Appl Microbiol Biotechnol; 2013 Nov; 97(22):9847-58. PubMed ID: 23354446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of alginate-immobilized microalgae beads as biosorbent for removal of total ammonia and phosphorus from water of African cichlid (Labidochromis lividus) recirculating aquaculture system.
    Sarkheil M; Ameri M; Safari O
    Environ Sci Pollut Res Int; 2022 Feb; 29(8):11432-11444. PubMed ID: 34536223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of clean in place (CIP) wastewater using microalgae: Nutrient upcycling and value-added byproducts production.
    Su Y; Jacobsen C
    Sci Total Environ; 2021 Sep; 785():147337. PubMed ID: 33932664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of a freshwater microalgae and its application for the treatment of wastewater and obtaining fatty acids from tilapia cultivation.
    Morando-Grijalva CA; Vázquez-Larios AL; Alcántara-Hernández RJ; Ortega-Clemente LA; Robledo-Narváez PN
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):28575-28584. PubMed ID: 32212076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal and biodegradation of nonylphenol by immobilized Chlorella vulgaris.
    Gao QT; Wong YS; Tam NF
    Bioresour Technol; 2011 Nov; 102(22):10230-8. PubMed ID: 21944284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of immobilized microalgal bead concentrations on wastewater nutrient removal.
    Tam NF; Wong YS
    Environ Pollut; 2000 Jan; 107(1):145-51. PubMed ID: 15093018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selecting the most suitable microalgae species to treat the effluent from an anaerobic membrane bioreactor.
    Pachés M; Martínez-Guijarro R; González-Camejo J; Seco A; Barat R
    Environ Technol; 2020 Jan; 41(3):267-276. PubMed ID: 29963975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of phenol by alginate immobilized Chlamydomonas reinhardtii cells.
    Nazos TT; Ghanotakis DF
    Arch Microbiol; 2021 Nov; 203(9):5805-5816. PubMed ID: 34528110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treating Urban Wastewater: Nutrient Removal by Using Immobilized Green Algae in Batch Cultures.
    Shaker S; Nemati A; Montazeri-Najafabady N; Mobasher MA; Morowvat MH; Ghasemi Y
    Int J Phytoremediation; 2015; 17(12):1177-82. PubMed ID: 26023845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis.
    Praveen P; Loh KC
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10345-54. PubMed ID: 26266755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nutrients on the biodegradation of tributyltin (TBT) by alginate immobilized microalga, Chlorella vulgaris, in natural river water.
    Jin J; Yang L; Chan SM; Luan T; Li Y; Tam NF
    J Hazard Mater; 2011 Jan; 185(2-3):1582-6. PubMed ID: 20952127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioavailability of wastewater derived dissolved organic nitrogen to green microalgae Selenastrum capricornutum, Chlamydomonas reinhardtii, and Chlorella vulgaris with/without presence of bacteria.
    Sun J; Simsek H
    J Environ Sci (China); 2017 Jul; 57():346-355. PubMed ID: 28647256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge.
    Mujtaba G; Lee K
    Water Res; 2017 Sep; 120():174-184. PubMed ID: 28486168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaccessibility of carotenoids from Chlorella vulgaris and Chlamydomonas reinhardtii.
    Gille A; Trautmann A; Posten C; Briviba K
    Int J Food Sci Nutr; 2015 Aug; 67(5):507-13. PubMed ID: 27146695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing immobilized Chlorella vulgaris growth with novel buoyant barium alginate bubble beads.
    Liu Y; Zhang G; Li Y; Wu X; Shang S; Che W
    Bioresour Technol; 2024 Aug; 406():130996. PubMed ID: 38885729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of Chlorella vulgaris and Nannochloropsis salina for nutrient and organic matter removal from municipal wastewater reverse osmosis concentrate.
    Mohseni A; Kube M; Fan L; Roddick FA
    Environ Sci Pollut Res Int; 2020 Jul; 27(21):26905-26914. PubMed ID: 32382902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic study of nutrients removal from municipal wastewater by
    Chaudhary R; Tong YW; Dikshit AK
    Environ Technol; 2020 Feb; 41(5):617-626. PubMed ID: 30074855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient and heavy metal removal from piggery wastewater and CH
    Guo G; Guan J; Sun S; Liu J; Zhao Y
    Water Environ Res; 2020 Jun; 92(6):922-933. PubMed ID: 31837273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.