These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32008861)

  • 21. Nutrient and heavy metal removal from piggery wastewater and CH
    Guo G; Guan J; Sun S; Liu J; Zhao Y
    Water Environ Res; 2020 Jun; 92(6):922-933. PubMed ID: 31837273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis: Microorganism growth and nutrients removal.
    Shen Y; Gao J; Li L
    Bioresour Technol; 2017 Nov; 243():905-913. PubMed ID: 28738545
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of Chlorella vulgaris for nutrient removal from synthetic wastewater and MBR-treated bio-park secondary effluent: growth kinetics, effects of carbon and phosphate concentrations.
    Ms K; Johnson I; Ngo HH; Guo W; Kumar M
    Environ Monit Assess; 2023 Feb; 195(3):415. PubMed ID: 36807702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal.
    Ren H; Tuo J; Addy MM; Zhang R; Lu Q; Anderson E; Chen P; Ruan R
    Bioresour Technol; 2017 Dec; 245(Pt A):1130-1138. PubMed ID: 28962086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of microalgae species and solution salinity on algal treatment of wastewater reverse osmosis concentrate.
    Mohseni A; Fan L; Roddick FA
    Chemosphere; 2021 Dec; 285():131487. PubMed ID: 34273703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluoxetine and Nutrients Removal from Aqueous Solutions by Phycoremediation.
    Silva ADM; Fernandes DF; Figueiredo SA; Freitas OM; Delerue-Matos C
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nutrient removal efficiency of green algal strains at high phosphate concentrations.
    Moreno Osorio JH; Del Mondo A; Pinto G; Pollio A; Frunzo L; Lens PNL; Esposito G
    Water Sci Technol; 2019 Nov; 80(10):1832-1843. PubMed ID: 32144215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous removal of nutrient and sulfonamides from marine aquaculture wastewater by concentrated and attached cultivation of Chlorella vulgaris in an algal biofilm membrane photobioreactor (BF-MPBR).
    Peng YY; Gao F; Yang HL; Wu HW; Li C; Lu MM; Yang ZY
    Sci Total Environ; 2020 Jul; 725():138524. PubMed ID: 32302854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of Chlorella vulgaris and Chlorella sorokiniana pa.91 in post treatment of dairy wastewater treatment plant effluents.
    Asadi P; Rad HA; Qaderi F
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):29473-29489. PubMed ID: 31396874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Auto-flocculation through cultivation of Chlorella vulgaris in seafood wastewater discharge: Influence of culture conditions on microalgae growth and nutrient removal.
    Nguyen TDP; Tran TNT; Le TVA; Nguyen Phan TX; Show PL; Chia SR
    J Biosci Bioeng; 2019 Apr; 127(4):492-498. PubMed ID: 30416001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a biosensor for environmental monitoring based on microalgae immobilized in silica hydrogels.
    Ferro Y; Perullini M; Jobbagy M; Bilmes SA; Durrieu C
    Sensors (Basel); 2012 Dec; 12(12):16879-91. PubMed ID: 23223083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced biosorption of transition metals by living Chlorella vulgaris immobilized in Ca-alginate beads.
    Ahmad A; Bhat AH; Buang A
    Environ Technol; 2019 Jun; 40(14):1793-1809. PubMed ID: 29345546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense.
    de-Bashan LE; Bashan Y; Moreno M; Lebsky VK; Bustillos JJ
    Can J Microbiol; 2002 Jun; 48(6):514-21. PubMed ID: 12166678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overexpression of the sulfate transporter-encoding SULTR2 increases chromium accumulation in Chlamydomonas reinhardtii.
    Tang Y; Zhang B; Li Z; Deng P; Deng X; Long H; Wang X; Huang K
    Biotechnol Bioeng; 2023 May; 120(5):1334-1345. PubMed ID: 36776103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microalgae growth-promoting bacteria as "helpers" for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater.
    de-Bashan LE; Hernandez JP; Morey T; Bashan Y
    Water Res; 2004 Jan; 38(2):466-74. PubMed ID: 14675659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacterial-algal coupling system for high strength mariculture wastewater treatment: Effect of temperature on nutrient recovery and microalgae cultivation.
    Zhang Z; Guo L; Liao Q; Gao M; Zhao Y; Jin C; She Z; Wang G
    Bioresour Technol; 2021 Oct; 338():125574. PubMed ID: 34303141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chlorella vulgaris cultivation in simulated wastewater for the biomass production, nutrients removal and CO
    Kong W; Kong J; Ma J; Lyu H; Feng S; Wang Z; Yuan P; Shen B
    J Environ Manage; 2021 Apr; 284():112070. PubMed ID: 33561760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nutrient removal from synthetic and secondary treated sewage and tannery wastewater through phycoremediation.
    Nagabalaji V; Sivasankari G; Srinivasan SV; Suthanthararajan R; Ravindranath E
    Environ Technol; 2019 Feb; 40(6):784-792. PubMed ID: 29171794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense.
    de-Bashan LE; Moreno M; Hernandez JP; Bashan Y
    Water Res; 2002 Jul; 36(12):2941-8. PubMed ID: 12171390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recycling of Nutrients from Dairy Wastewater by Extremophilic Microalgae with High Ammonia Tolerance.
    Pang N; Bergeron AD; Gu X; Fu X; Dong T; Yao Y; Chen S
    Environ Sci Technol; 2020 Dec; 54(23):15366-15375. PubMed ID: 33190494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.