These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 32009024)
1. Anodic Electrochemiluminescence of CdTe Quantum Dots Using Tripropylamine as Coreactant: Size-dependent Effect. Nakayama M; Kitano T; Ye J; Jin J Anal Sci; 2020 Jul; 36(7):859-863. PubMed ID: 32009024 [TBL] [Abstract][Full Text] [Related]
2. Effects of multi-walled carbon nanotubes on the electrogenerated chemiluminescence and fluorescence of CdTe quantum dots. Wusimanjiang Y; Meyer A; Lu L; Miao W Anal Bioanal Chem; 2016 Oct; 408(25):7049-57. PubMed ID: 27150206 [TBL] [Abstract][Full Text] [Related]
3. Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Liu X; Jiang H; Lei J; Ju H Anal Chem; 2007 Nov; 79(21):8055-60. PubMed ID: 17910416 [TBL] [Abstract][Full Text] [Related]
4. AgInZnS quantum dots as anodic emitters with strong and stable electrochemiluminescence for biosensing application. Ye Z; Liu Y; Pan M; Tao X; Chen Y; Ma P; Zhuo Y; Song D Biosens Bioelectron; 2023 May; 228():115219. PubMed ID: 36913885 [TBL] [Abstract][Full Text] [Related]
5. Size-dependent electrochemiluminescence behavior of water-soluble CdTe quantum dots and selective sensing of l-cysteine. Hua L; Han H; Zhang X Talanta; 2009 Mar; 77(5):1654-9. PubMed ID: 19159779 [TBL] [Abstract][Full Text] [Related]
6. Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle. Liu X; Ju H Anal Chem; 2008 Jul; 80(14):5377-82. PubMed ID: 18522432 [TBL] [Abstract][Full Text] [Related]
7. A dual-potential electrochemiluminescence ratiometric sensor for sensitive detection of dopamine based on graphene-CdTe quantum dots and self-enhanced Ru(II) complex. Fu X; Tan X; Yuan R; Chen S Biosens Bioelectron; 2017 Apr; 90():61-68. PubMed ID: 27883960 [TBL] [Abstract][Full Text] [Related]
8. A Grand Avenue to Au Nanocluster Electrochemiluminescence. Hesari M; Ding Z Acc Chem Res; 2017 Feb; 50(2):218-230. PubMed ID: 28080028 [TBL] [Abstract][Full Text] [Related]
9. Anodic electrogenerated chemiluminescence of quantum dots: size and stabilizer matter. Hu T; Li T; Yuan L; Liu S; Wang Z Nanoscale; 2012 Sep; 4(17):5447-53. PubMed ID: 22837021 [TBL] [Abstract][Full Text] [Related]
10. Novel Ratiometric Electrochemiluminescence Biosensor Based on BP-CdTe QDs with Dual Emission for Detecting MicroRNA-126. Zhao J; He Y; Tan K; Yang J; Chen S; Yuan R Anal Chem; 2021 Sep; 93(36):12400-12408. PubMed ID: 34469691 [TBL] [Abstract][Full Text] [Related]
11. Enhanced electrochemiluminescence of RuSi nanoparticles for ultrasensitive detection of ochratoxin A by energy transfer with CdTe quantum dots. Wang Q; Chen M; Zhang H; Wen W; Zhang X; Wang S Biosens Bioelectron; 2016 May; 79():561-7. PubMed ID: 26749097 [TBL] [Abstract][Full Text] [Related]
12. Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium tris(2,2')bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity. Zu Y; Bard AJ Anal Chem; 2000 Jul; 72(14):3223-32. PubMed ID: 10939391 [TBL] [Abstract][Full Text] [Related]
13. Electrogenerated chemiluminescence determination of C-reactive protein with carboxyl CdSe/ZnS core/shell quantum dots. Wang S; Harris E; Shi J; Chen A; Parajuli S; Jing X; Miao W Phys Chem Chem Phys; 2010 Sep; 12(34):10073-80. PubMed ID: 20683528 [TBL] [Abstract][Full Text] [Related]
14. Electrogenerated chemiluminescence of quantum dots with lucigenin as coreactant for sensitive detection of catechol. Dong Y; Zhou Y; Wang J; Dong Y; Wang C Talanta; 2016 Jan; 146():266-71. PubMed ID: 26695262 [TBL] [Abstract][Full Text] [Related]
15. Anodic near-infrared electrochemiluminescence from Cu-doped CdTe quantum dots for tetracycline detection. Li ZZ; Wu MX; Ding SN Anal Methods; 2021 May; 13(20):2297-2304. PubMed ID: 33949454 [TBL] [Abstract][Full Text] [Related]
16. Enhanced electrochemiluminescence from reduced graphene oxide-CdTe quantum dots for highly selective determination of copper ion. Hu FX; Wang J; Chen S; Rao Q Luminescence; 2019 Nov; 34(7):666-672. PubMed ID: 31243864 [TBL] [Abstract][Full Text] [Related]
17. [Quantitative determination of pazufloxacin using water-soluble quantum dots as fluorescent probes]. Ling X; Deng DW; Zhong WY; Yu JS Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1317-21. PubMed ID: 18800713 [TBL] [Abstract][Full Text] [Related]
18. Multiplex electrochemiluminescence DNA sensor for determination of hepatitis B virus and hepatitis C virus based on multicolor quantum dots and Au nanoparticles. Liu L; Wang X; Ma Q; Lin Z; Chen S; Li Y; Lu L; Qu H; Su X Anal Chim Acta; 2016 Apr; 916():92-101. PubMed ID: 27016443 [TBL] [Abstract][Full Text] [Related]
19. An electrochemiluminescence sensor for determination of durabolin based on CdTe QD films by layer-by-layer self-assembly. Wan F; Yu J; Yang P; Ge S; Yan M Anal Bioanal Chem; 2011 May; 400(3):807-14. PubMed ID: 21365349 [TBL] [Abstract][Full Text] [Related]
20. Facile electrochemiluminescence sensing platform based on water-soluble tungsten oxide quantum dots for ultrasensitive detection of dopamine released by cells. Peng H; Liu P; Wu W; Chen W; Meng X; Lin X; Liu A Anal Chim Acta; 2019 Aug; 1065():21-28. PubMed ID: 31005147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]