BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 32009151)

  • 1. Biphasic unbinding of a metalloregulator from DNA for transcription (de)repression in Live Bacteria.
    Jung W; Sengupta K; Wendel BM; Helmann JD; Chen P
    Nucleic Acids Res; 2020 Mar; 48(5):2199-2208. PubMed ID: 32009151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and mechanistic basis of zinc regulation across the E. coli Zur regulon.
    Gilston BA; Wang S; Marcus MD; Canalizo-Hernández MA; Swindell EP; Xue Y; Mondragón A; O'Halloran TV
    PLoS Biol; 2014 Nov; 12(11):e1001987. PubMed ID: 25369000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concentration- and chromosome-organization-dependent regulator unbinding from DNA for transcription regulation in living cells.
    Chen TY; Santiago AG; Jung W; Krzemiński Ł; Yang F; Martell DJ; Helmann JD; Chen P
    Nat Commun; 2015 Jul; 6():7445. PubMed ID: 26145755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the Bacillus subtilis yciC gene and insights into the DNA-binding specificity of the zinc-sensing metalloregulator Zur.
    Gabriel SE; Miyagi F; Gaballa A; Helmann JD
    J Bacteriol; 2008 May; 190(10):3482-8. PubMed ID: 18344368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Zur regulon of Corynebacterium glutamicum ATCC 13032.
    Schröder J; Jochmann N; Rodionov DA; Tauch A
    BMC Genomics; 2010 Jan; 11():12. PubMed ID: 20055984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zur and zinc increase expression of E. coli ribosomal protein L31 through RNA-mediated repression of the repressor L31p.
    Rasmussen RA; Wang S; Camarillo JM; Sosnowski V; Cho BK; Goo YA; Lucks JB; O'Halloran TV
    Nucleic Acids Res; 2022 Dec; 50(22):12739-12753. PubMed ID: 36533433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli.
    Patzer SI; Hantke K
    J Biol Chem; 2000 Aug; 275(32):24321-32. PubMed ID: 10816566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metalloregulator CueR biases RNA polymerase's kinetic sampling of dead-end or open complex to repress or activate transcription.
    Martell DJ; Joshi CP; Gaballa A; Santiago AG; Chen TY; Jung W; Helmann JD; Chen P
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13467-72. PubMed ID: 26483469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the metal receptor sites in Escherichia coli Zur, an ultrasensitive zinc(II) metalloregulatory protein.
    Outten CE; Tobin DA; Penner-Hahn JE; O'Halloran TV
    Biochemistry; 2001 Sep; 40(35):10417-23. PubMed ID: 11523983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis.
    Gaballa A; Helmann JD
    J Bacteriol; 1998 Nov; 180(22):5815-21. PubMed ID: 9811636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Agrobacterium tumefaciens atu3184 gene, a member of the COG0523 family of GTPases, is regulated by the transcriptional repressor Zur.
    Khemthong S; Nuonming P; Nookabkaewb S; Sukchawalit R; Mongkolsuk S
    Microbiol Res; 2019 May; 222():14-24. PubMed ID: 30928026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins.
    Panina EM; Mironov AA; Gelfand MS
    Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9912-7. PubMed ID: 12904577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli.
    Patzer SI; Hantke K
    Mol Microbiol; 1998 Jun; 28(6):1199-210. PubMed ID: 9680209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and function of bacterial H-NS protein.
    Grainger DC
    Biochem Soc Trans; 2016 Dec; 44(6):1561-1569. PubMed ID: 27913665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of the Bacillus subtilis Zur regulon.
    Gaballa A; Wang T; Ye RW; Helmann JD
    J Bacteriol; 2002 Dec; 184(23):6508-14. PubMed ID: 12426338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and Functional Insights into the Regulation of d-Galactonate Metabolism by the Transcriptional Regulator DgoR in
    Singh B; Arya G; Kundu N; Sangwan A; Nongthombam S; Chaba R
    J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis for the integration of environmental signals by FurB from
    Sein-Echaluce VC; Pallarés MC; Lostao A; Yruela I; Velázquez-Campoy A; Luisa Peleato M; Fillat MF
    Biochem J; 2018 Jan; 475(1):151-168. PubMed ID: 29203647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA-RNA interactions are critical for chromosome condensation in
    Qian Z; Zhurkin VB; Adhya S
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12225-12230. PubMed ID: 29087325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of zinc uptake regulator by zinc binding to three regulatory sites.
    Choi Y; Koh J; Cha SS; Roe JH
    Nucleic Acids Res; 2024 May; 52(8):4185-4197. PubMed ID: 38349033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification of Bacillus subtilis Zur-binding sites associated with a Zur box expands its known regulatory network.
    Prestel E; Noirot P; Auger S
    BMC Microbiol; 2015 Feb; 15(1):13. PubMed ID: 25649915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.