These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 32009677)

  • 1. A poroelastic mixture model of mechanobiological processes in biomass growth: theory and application to tissue engineering.
    Sacco R; Causin P; Lelli C; Raimondi MT
    Meccanica; 2017; 52(14):3273-3297. PubMed ID: 32009677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multiscale approach in the computational modeling of the biophysical environment in artificial cartilage tissue regeneration.
    Causin P; Sacco R; Verri M
    Biomech Model Mechanobiol; 2013 Aug; 12(4):763-80. PubMed ID: 22975839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biochemo-mechano coupled, computational model combining membrane transport and pericellular proteolysis in tissue mechanics.
    Vuong AT; Rauch AD; Wall WA
    Proc Math Phys Eng Sci; 2017 Mar; 473(2199):20160812. PubMed ID: 28413347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A triphasic constrained mixture model of engineered tissue formation under in vitro dynamic mechanical conditioning.
    Soares JS; Sacks MS
    Biomech Model Mechanobiol; 2016 Apr; 15(2):293-316. PubMed ID: 26055347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A continuum model of cell proliferation and nutrient transport in a perfusion bioreactor.
    Shakeel M; Matthews PC; Graham RS; Waters SL
    Math Med Biol; 2013 Mar; 30(1):21-44. PubMed ID: 21994793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multiphysics/multiscale 2D numerical simulation of scaffold-based cartilage regeneration under interstitial perfusion in a bioreactor.
    Sacco R; Causin P; Zunino P; Raimondi MT
    Biomech Model Mechanobiol; 2011 Jul; 10(4):577-89. PubMed ID: 20865436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A poroelastic finite element formulation including transport and swelling in soft tissue structures.
    Simon BR; Liable JP; Pflaster D; Yuan Y; Krag MH
    J Biomech Eng; 1996 Feb; 118(1):1-9. PubMed ID: 8833068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arterial tissues and their inflammatory response to collagen damage: A continuum in silico model coupling nonlinear mechanics, molecular pathways, and cell behavior.
    Gierig M; Wriggers P; Marino M
    Comput Biol Med; 2023 May; 158():106811. PubMed ID: 37011434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests.
    Wu JZ; Herzog W
    Ann Biomed Eng; 2000 Mar; 28(3):318-30. PubMed ID: 10784096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multiphysics 3D model of tissue growth under interstitial perfusion in a tissue-engineering bioreactor.
    Nava MM; Raimondi MT; Pietrabissa R
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1169-79. PubMed ID: 23371525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules.
    Ateshian GA; Nims RJ; Maas S; Weiss JA
    Biomech Model Mechanobiol; 2014 Oct; 13(5):1105-20. PubMed ID: 24558059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiphase modelling of the influence of fluid flow and chemical concentration on tissue growth in a hollow fibre membrane bioreactor.
    Pearson NC; Shipley RJ; Waters SL; Oliver JM
    Math Med Biol; 2014 Dec; 31(4):393-430. PubMed ID: 24036069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modeling of combined cell population dynamics and oxygen transport in engineered tissue subject to interstitial perfusion.
    Galbusera F; Cioffi M; Raimondi MT; Pietrabissa R
    Comput Methods Biomech Biomed Engin; 2007 Aug; 10(4):279-87. PubMed ID: 17671861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of cell growth in tissue-engineering constructs under direct perfusion: Modeling and simulation.
    Chung CA; Chen CW; Chen CP; Tseng CS
    Biotechnol Bioeng; 2007 Aug; 97(6):1603-16. PubMed ID: 17304558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution.
    Lappa M
    Biotechnol Bioeng; 2003 Dec; 84(5):518-32. PubMed ID: 14574686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multiscale analysis of nutrient transport and biological tissue growth in vitro.
    O'Dea RD; Nelson MR; El Haj AJ; Waters SL; Byrne HM
    Math Med Biol; 2015 Sep; 32(3):345-66. PubMed ID: 25323738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the theory of reactive mixtures for modeling biological growth.
    Ateshian GA
    Biomech Model Mechanobiol; 2007 Nov; 6(6):423-45. PubMed ID: 17206407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.
    Mithraratne K; Ho H; Hunter PJ; Fernandez JW
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A poroelastic continuum model of the cupula partition and the response dynamics of the vestibular semicircular canal.
    Damiano ER
    J Biomech Eng; 1999 Oct; 121(5):449-61. PubMed ID: 10529911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Continuum Mechanics Model of Enzyme-Based Tissue Degradation in Cancer Therapies.
    Deville M; Natalini R; Poignard C
    Bull Math Biol; 2018 Dec; 80(12):3184-3226. PubMed ID: 30291591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.