BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32009724)

  • 1. Genome-wide repeat dynamics reflect phylogenetic distance in closely related allotetraploid
    Dodsworth S; Jang TS; Struebig M; Chase MW; Weiss-Schneeweiss H; Leitch AR
    Plant Syst Evol; 2017; 303(8):1013-1020. PubMed ID: 32009724
    [No Abstract]   [Full Text] [Related]  

  • 2. Diploidization and genome size change in allopolyploids is associated with differential dynamics of low- and high-copy sequences.
    Renny-Byfield S; Kovarik A; Kelly LJ; Macas J; Novak P; Chase MW; Nichols RA; Pancholi MR; Grandbastien MA; Leitch AR
    Plant J; 2013 Jun; 74(5):829-39. PubMed ID: 23517128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repetitive DNA Restructuring Across Multiple
    Dodsworth S; Guignard MS; Pérez-Escobar OA; Struebig M; Chase MW; Leitch AR
    Genes (Basel); 2020 Feb; 11(2):. PubMed ID: 32092894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical investigations of antibiosis material in leaf exudate of wildNicotiana species and interspecific hybrids.
    Huesing J; Jones D; Deverna J; Myers J; Collins G; Severson R; Sisson V
    J Chem Ecol; 1989 Apr; 15(4):1203-17. PubMed ID: 24272005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Genome Size and Repetitive DNA Evolution in Diploid Species of
    McCann J; Macas J; Novák P; Stuessy TF; Villaseñor JL; Weiss-Schneeweiss H
    Front Plant Sci; 2020; 11():362. PubMed ID: 32296454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs.
    Renny-Byfield S; Chester M; Kovařík A; Le Comber SC; Grandbastien MA; Deloger M; Nichols RA; Macas J; Novák P; Chase MW; Leitch AR
    Mol Biol Evol; 2011 Oct; 28(10):2843-54. PubMed ID: 21512105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of tobacco hornworm antibiosis factor from cuticulae of repandae section ofNicotiana species.
    Severson RF; Huesing JE; Jones D; Arrendale RF; Sisson VA
    J Chem Ecol; 1988 Jun; 14(6):1485-94. PubMed ID: 24276399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstructing phylogenetic relationships based on repeat sequence similarities.
    Vitales D; Garcia S; Dodsworth S
    Mol Phylogenet Evol; 2020 Jun; 147():106766. PubMed ID: 32119996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transposable elements in a clade of three tetraploids and a diploid relative, focusing on Gypsy amplification.
    Piednoël M; Sousa A; Renner SS
    Mob DNA; 2015; 6():5. PubMed ID: 25834645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Size Doubling Arises From the Differential Repetitive DNA Dynamics in the Genus
    Pellicer J; Fernández P; Fay MF; Michálková E; Leitch IJ
    Front Genet; 2021; 12():726211. PubMed ID: 34552621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylotranscriptomics supports numerous polyploidization events and phylogenetic relationships in
    Wang S; Gao J; Li Z; Chen K; Pu W; Feng C
    Front Plant Sci; 2023; 14():1205683. PubMed ID: 37575947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae.
    Lim KY; Matyásek R; Lichtenstein CP; Leitch AR
    Chromosoma; 2000 Jul; 109(4):245-58. PubMed ID: 10968253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear glutamine synthetase evolution in Nicotiana: phylogenetics and the origins of allotetraploid and homoploid (diploid) hybrids.
    Clarkson JJ; Kelly LJ; Leitch AR; Knapp S; Chase MW
    Mol Phylogenet Evol; 2010 Apr; 55(1):99-112. PubMed ID: 19818862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the LTR retrotransposon repertoire of a plant clade of six diploid and one tetraploid species.
    Piednoël M; Carrete-Vega G; Renner SS
    Plant J; 2013 Aug; 75(4):699-709. PubMed ID: 23663083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome Sequence of Jaltomata Addresses Rapid Reproductive Trait Evolution and Enhances Comparative Genomics in the Hyper-Diverse Solanaceae.
    Wu M; Kostyun JL; Moyle LC
    Genome Biol Evol; 2019 Feb; 11(2):335-349. PubMed ID: 30608583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The repetitive DNA landscape in Avena (Poaceae): chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads.
    Liu Q; Li X; Zhou X; Li M; Zhang F; Schwarzacher T; Heslop-Harrison JS
    BMC Plant Biol; 2019 May; 19(1):226. PubMed ID: 31146681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity and evolution of the repetitive genomic content in Cannabis sativa.
    Pisupati R; Vergara D; Kane NC
    BMC Genomics; 2018 Feb; 19(1):156. PubMed ID: 29466945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomics and evolutionary dynamics of Saccharomyces cerevisiae Ty elements.
    Jordan IK; McDonald JF
    Genetica; 1999; 107(1-3):3-13. PubMed ID: 10952193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements.
    Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM
    Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of genome evolution on the allotetraploid Nicotiana rustica - an intriguing story of enhanced alkaloid production.
    Sierro N; Battey JND; Bovet L; Liedschulte V; Ouadi S; Thomas J; Broye H; Laparra H; Vuarnoz A; Lang G; Goepfert S; Peitsch MC; Ivanov NV
    BMC Genomics; 2018 Nov; 19(1):855. PubMed ID: 30497378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.