These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32009828)

  • 21. Effects of virtual reality-based motor control training on inflammation, oxidative stress, neuroplasticity and upper limb motor function in patients with chronic stroke: a randomized controlled trial.
    Huang CY; Chiang WC; Yeh YC; Fan SC; Yang WH; Kuo HC; Li PC
    BMC Neurol; 2022 Jan; 22(1):21. PubMed ID: 35016629
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effectiveness of robot-assisted virtual reality mirror therapy for upper limb motor dysfunction after stroke: study protocol for a single-center randomized controlled clinical trial.
    Wei D; Hua XY; Zheng MX; Wu JJ; Xu JG
    BMC Neurol; 2022 Aug; 22(1):307. PubMed ID: 35996106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Examining the effectiveness of virtual, augmented, and mixed reality (VAMR) therapy for upper limb recovery and activities of daily living in stroke patients: a systematic review and meta-analysis.
    Leong SC; Tang YM; Toh FM; Fong KNK
    J Neuroeng Rehabil; 2022 Aug; 19(1):93. PubMed ID: 36002898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Impact of Cognitive Function on Virtual Reality Intervention for Upper Extremity Rehabilitation of Patients With Subacute Stroke: Prospective Randomized Controlled Trial With 6-Month Follow-up.
    Leng Y; Lo WLA; Mao YR; Bian R; Zhao JL; Xu Z; Li L; Huang DF
    JMIR Serious Games; 2022 Jul; 10(3):e33755. PubMed ID: 35802415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of virtual reality-based planar motion exercises on upper extremity function, range of motion, and health-related quality of life: a multicenter, single-blinded, randomized, controlled pilot study.
    Park M; Ko MH; Oh SW; Lee JY; Ham Y; Yi H; Choi Y; Ha D; Shin JH
    J Neuroeng Rehabil; 2019 Oct; 16(1):122. PubMed ID: 31651335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immersive Virtual Reality to Improve Outcomes in Veterans With Stroke: Protocol for a Single-Arm Pilot Study.
    Tran JE; Fowler CA; Delikat J; Kaplan H; Merzier MM; Schlesinger MR; Litzenberger S; Marszalek JM; Scott S; Winkler SL
    JMIR Res Protoc; 2021 May; 10(5):e26133. PubMed ID: 33970110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficacy of a Virtual Reality Commercial Gaming Device in Upper Limb Recovery after Stroke: A Randomized, Controlled Study.
    Kong KH; Loh YJ; Thia E; Chai A; Ng CY; Soh YM; Toh S; Tjan SY
    Top Stroke Rehabil; 2016 Oct; 23(5):333-40. PubMed ID: 27098818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Augmented efficacy of intermittent theta burst stimulation on the virtual reality-based cycling training for upper limb function in patients with stroke: a double-blinded, randomized controlled trial.
    Chen YH; Chen CL; Huang YZ; Chen HC; Chen CY; Wu CY; Lin KC
    J Neuroeng Rehabil; 2021 May; 18(1):91. PubMed ID: 34059090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Virtual Reality in Upper Extremity Rehabilitation of Stroke Patients: A Randomized Controlled Trial.
    Ikbali Afsar S; Mirzayev I; Umit Yemisci O; Cosar Saracgil SN
    J Stroke Cerebrovasc Dis; 2018 Dec; 27(12):3473-3478. PubMed ID: 30193810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can specific virtual reality combined with conventional rehabilitation improve poststroke hand motor function? A randomized clinical trial.
    Rodríguez-Hernández M; Polonio-López B; Corregidor-Sánchez AI; Martín-Conty JL; Mohedano-Moriano A; Criado-Álvarez JJ
    J Neuroeng Rehabil; 2023 Apr; 20(1):38. PubMed ID: 37016408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of a Virtual Reality-Based Mirror Therapy Program on Improving Sensorimotor Function of Hands in Chronic Stroke Patients: A Randomized Controlled Trial.
    Hsu HY; Kuo LC; Lin YC; Su FC; Yang TH; Lin CW
    Neurorehabil Neural Repair; 2022 Jun; 36(6):335-345. PubMed ID: 35341360
    [No Abstract]   [Full Text] [Related]  

  • 32. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial.
    Dawson J; Liu CY; Francisco GE; Cramer SC; Wolf SL; Dixit A; Alexander J; Ali R; Brown BL; Feng W; DeMark L; Hochberg LR; Kautz SA; Majid A; O'Dell MW; Pierce D; Prudente CN; Redgrave J; Turner DL; Engineer ND; Kimberley TJ
    Lancet; 2021 Apr; 397(10284):1545-1553. PubMed ID: 33894832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mobile game-based virtual reality rehabilitation program for upper limb dysfunction after ischemic stroke.
    Choi YH; Ku J; Lim H; Kim YH; Paik NJ
    Restor Neurol Neurosci; 2016 May; 34(3):455-63. PubMed ID: 27163250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Promotoer, a brain-computer interface-assisted intervention to promote upper limb functional motor recovery after stroke: a study protocol for a randomized controlled trial to test early and long-term efficacy and to identify determinants of response.
    Mattia D; Pichiorri F; Colamarino E; Masciullo M; Morone G; Toppi J; Pisotta I; Tamburella F; Lorusso M; Paolucci S; Puopolo M; Cincotti F; Molinari M
    BMC Neurol; 2020 Jun; 20(1):254. PubMed ID: 32593293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perspectives of Motor Functional Upper Extremity Recovery with the Use of Immersive Virtual Reality in Stroke Patients.
    Sip P; Kozłowska M; Czysz D; Daroszewski P; Lisiński P
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combining levodopa and virtual reality-based therapy for rehabilitation of the upper limb after acute stroke: pilot study Part II.
    Samuel GS; Oey NE; Choo M; Ju H; Chan WY; Kok S; Ge Y; Van Dongen AM; Ng YS
    Singapore Med J; 2017 Oct; 58(10):610-617. PubMed ID: 27311739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Virtual reality gait training versus non-virtual reality gait training for improving participation in subacute stroke survivors: study protocol of the ViRTAS randomized controlled trial.
    de Rooij IJM; van de Port IGL; Visser-Meily JMA; Meijer JG
    Trials; 2019 Jan; 20(1):89. PubMed ID: 30696491
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial.
    Saposnik G; Cohen LG; Mamdani M; Pooyania S; Ploughman M; Cheung D; Shaw J; Hall J; Nord P; Dukelow S; Nilanont Y; De Los Rios F; Olmos L; Levin M; Teasell R; Cohen A; Thorpe K; Laupacis A; Bayley M;
    Lancet Neurol; 2016 Sep; 15(10):1019-27. PubMed ID: 27365261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effectiveness of rehabilitation with virtual reality and biofeedback in recovery of hand function after stroke].
    Kostenko EV; Petrova LV; Martynov MY; Pogonchenkova IV
    Zh Nevrol Psikhiatr Im S S Korsakova; 2023; 123(3. Vyp. 2):68-75. PubMed ID: 36950823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect and Safety of Transcutaneous Auricular Vagus Nerve Stimulation on Recovery of Upper Limb Motor Function in Subacute Ischemic Stroke Patients: A Randomized Pilot Study.
    Wu D; Ma J; Zhang L; Wang S; Tan B; Jia G
    Neural Plast; 2020; 2020():8841752. PubMed ID: 32802039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.