These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
552 related articles for article (PubMed ID: 32010130)
1. Exploiting Human NK Cells in Tumor Therapy. Vacca P; Pietra G; Tumino N; Munari E; Mingari MC; Moretta L Front Immunol; 2019; 10():3013. PubMed ID: 32010130 [TBL] [Abstract][Full Text] [Related]
2. NK cells and ILCs in tumor immunotherapy. Sivori S; Pende D; Quatrini L; Pietra G; Della Chiesa M; Vacca P; Tumino N; Moretta F; Mingari MC; Locatelli F; Moretta L Mol Aspects Med; 2021 Aug; 80():100870. PubMed ID: 32800530 [TBL] [Abstract][Full Text] [Related]
3. Human NK cells: From surface receptors to clinical applications. Moretta L; Pietra G; Vacca P; Pende D; Moretta F; Bertaina A; Mingari MC; Locatelli F; Moretta A Immunol Lett; 2016 Oct; 178():15-9. PubMed ID: 27185471 [TBL] [Abstract][Full Text] [Related]
4. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Sivori S; Vacca P; Del Zotto G; Munari E; Mingari MC; Moretta L Cell Mol Immunol; 2019 May; 16(5):430-441. PubMed ID: 30778167 [TBL] [Abstract][Full Text] [Related]
5. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells. Kim N; Kim HS Front Immunol; 2018; 9():2041. PubMed ID: 30250471 [TBL] [Abstract][Full Text] [Related]
7. Human natural killer cells: origin, receptors, function, and clinical applications. Moretta L; Montaldo E; Vacca P; Del Zotto G; Moretta F; Merli P; Locatelli F; Mingari MC Int Arch Allergy Immunol; 2014; 164(4):253-64. PubMed ID: 25323661 [TBL] [Abstract][Full Text] [Related]
8. Inhibitory Receptors and Checkpoints in Human NK Cells, Implications for the Immunotherapy of Cancer. Sivori S; Della Chiesa M; Carlomagno S; Quatrini L; Munari E; Vacca P; Tumino N; Mariotti FR; Mingari MC; Pende D; Moretta L Front Immunol; 2020; 11():2156. PubMed ID: 33013909 [TBL] [Abstract][Full Text] [Related]
9. At the Bench: Preclinical rationale for exploiting NK cells and γδ T lymphocytes for the treatment of high-risk leukemias. Norell H; Moretta A; Silva-Santos B; Moretta L J Leukoc Biol; 2013 Dec; 94(6):1123-39. PubMed ID: 24108703 [TBL] [Abstract][Full Text] [Related]
10. The Rise of NK Cell Checkpoints as Promising Therapeutic Targets in Cancer Immunotherapy. Sun H; Sun C Front Immunol; 2019; 10():2354. PubMed ID: 31681269 [TBL] [Abstract][Full Text] [Related]
11. Reformation in chimeric antigen receptor based cancer immunotherapy: Redirecting natural killer cell. Lin C; Zhang J Biochim Biophys Acta Rev Cancer; 2018 Apr; 1869(2):200-215. PubMed ID: 29378229 [TBL] [Abstract][Full Text] [Related]
12. DAP12-based activating chimeric antigen receptor for NK cell tumor immunotherapy. Töpfer K; Cartellieri M; Michen S; Wiedemuth R; Müller N; Lindemann D; Bachmann M; Füssel M; Schackert G; Temme A J Immunol; 2015 Apr; 194(7):3201-12. PubMed ID: 25740942 [TBL] [Abstract][Full Text] [Related]
13. Targeting NK Cell Checkpoint Receptors or Molecules for Cancer Immunotherapy. Zhang C; Liu Y Front Immunol; 2020; 11():1295. PubMed ID: 32714324 [TBL] [Abstract][Full Text] [Related]
14. Phenotypic and functional analysis of the HLA-class I-specific inhibitory receptors of natural killer cells isolated from peripheral blood of patients undergoing bone marrow transplantation from matched unrelated donors. Vitale C; Pitto A; Benvenuto F; Ponte M; Bellomo R; Frassoni F; Mingari MC; Bacigalupo A; Moretta L Hematol J; 2000; 1(2):136-44. PubMed ID: 11920181 [TBL] [Abstract][Full Text] [Related]
15. Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy. Figueroa JA; Reidy A; Mirandola L; Trotter K; Suvorava N; Figueroa A; Konala V; Aulakh A; Littlefield L; Grizzi F; Rahman RL; Jenkins MR; Musgrove B; Radhi S; D'Cunha N; D'Cunha LN; Hermonat PL; Cobos E; Chiriva-Internati M Int Rev Immunol; 2015 Mar; 34(2):154-87. PubMed ID: 25901860 [TBL] [Abstract][Full Text] [Related]
16. HLA Class I Molecules as Immune Checkpoints for NK Cell Alloreactivity and Anti-Viral Immunity in Kidney Transplantation. Duygu B; Olieslagers TI; Groeneweg M; Voorter CEM; Wieten L Front Immunol; 2021; 12():680480. PubMed ID: 34295330 [TBL] [Abstract][Full Text] [Related]
17. HLA Class I Knockout Converts Allogeneic Primary NK Cells Into Suitable Effectors for "Off-the-Shelf" Immunotherapy. Hoerster K; Uhrberg M; Wiek C; Horn PA; Hanenberg H; Heinrichs S Front Immunol; 2020; 11():586168. PubMed ID: 33584651 [TBL] [Abstract][Full Text] [Related]
18. Targeting human leukocyte antigen G with chimeric antigen receptors of natural killer cells convert immunosuppression to ablate solid tumors. Jan CI; Huang SW; Canoll P; Bruce JN; Lin YC; Pan CM; Lu HM; Chiu SC; Cho DY J Immunother Cancer; 2021 Oct; 9(10):. PubMed ID: 34663641 [TBL] [Abstract][Full Text] [Related]
19. NK Cell Dysfunction and Checkpoint Immunotherapy. Bi J; Tian Z Front Immunol; 2019; 10():1999. PubMed ID: 31552017 [TBL] [Abstract][Full Text] [Related]
20. Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer. Mehta RS; Rezvani K Front Immunol; 2018; 9():283. PubMed ID: 29497427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]