These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
552 related articles for article (PubMed ID: 32010130)
61. Enhanced Cancer Immunotherapy by Chimeric Antigen Receptor-Modified T Cells Engineered to Secrete Checkpoint Inhibitors. Li S; Siriwon N; Zhang X; Yang S; Jin T; He F; Kim YJ; Mac J; Lu Z; Wang S; Han X; Wang P Clin Cancer Res; 2017 Nov; 23(22):6982-6992. PubMed ID: 28912137 [No Abstract] [Full Text] [Related]
62. Natural killer cell receptors: alterations and therapeutic targeting in malignancies. Konjević G; Vuletić A; Mirjačić Martinović K Immunol Res; 2016 Feb; 64(1):25-35. PubMed ID: 26374324 [TBL] [Abstract][Full Text] [Related]
63. Liu LL; Béziat V; Oei VYS; Pfefferle A; Schaffer M; Lehmann S; Hellström-Lindberg E; Söderhäll S; Heyman M; Grandér D; Malmberg KJ Cancer Immunol Res; 2017 Aug; 5(8):654-665. PubMed ID: 28637877 [TBL] [Abstract][Full Text] [Related]
64. Allogeneic chimeric antigen receptor-modified cells for adoptive cell therapy of cancer. Marcus A; Eshhar Z Expert Opin Biol Ther; 2014 Jul; 14(7):947-54. PubMed ID: 24661086 [TBL] [Abstract][Full Text] [Related]
65. Characterization of natural killer and natural killer-like T cells derived from ex vivo expanded and activated cord blood mononuclear cells: implications for adoptive cellular immunotherapy. Ayello J; van de Ven C; Cairo E; Hochberg J; Baxi L; Satwani P; Cairo MS Exp Hematol; 2009 Oct; 37(10):1216-29. PubMed ID: 19638292 [TBL] [Abstract][Full Text] [Related]
66. Recalling the Biological Significance of Immune Checkpoints on NK Cells: A Chance to Overcome LAG3, PD1, and CTLA4 Inhibitory Pathways by Adoptive NK Cell Transfer? Lanuza PM; Pesini C; Arias MA; Calvo C; Ramirez-Labrada A; Pardo J Front Immunol; 2019; 10():3010. PubMed ID: 31998304 [TBL] [Abstract][Full Text] [Related]
67. Enhancing the Activation and Releasing the Brakes: A Double Hit Strategy to Improve NK Cell Cytotoxicity Against Multiple Myeloma. Tognarelli S; Wirsching S; von Metzler I; Rais B; Jacobs B; Serve H; Bader P; Ullrich E Front Immunol; 2018; 9():2743. PubMed ID: 30542346 [TBL] [Abstract][Full Text] [Related]
68. Role of natural killer cells for immunotherapy in chronic myeloid leukemia (Review). Lee HR; Baek KH Oncol Rep; 2019 May; 41(5):2625-2635. PubMed ID: 30896812 [TBL] [Abstract][Full Text] [Related]
69. Negative depletion of α/β+ T cells and of CD19+ B lymphocytes: a novel frontier to optimize the effect of innate immunity in HLA-mismatched hematopoietic stem cell transplantation. Locatelli F; Bauquet A; Palumbo G; Moretta F; Bertaina A Immunol Lett; 2013; 155(1-2):21-3. PubMed ID: 24091162 [TBL] [Abstract][Full Text] [Related]
70. The Complement Receptors C3aR and C5aR Are a New Class of Immune Checkpoint Receptor in Cancer Immunotherapy. Wang Y; Zhang H; He YW Front Immunol; 2019; 10():1574. PubMed ID: 31379815 [TBL] [Abstract][Full Text] [Related]
71. The biology of natural killer cells and implications for therapy of human disease. Chiorean EG; Miller JS J Hematother Stem Cell Res; 2001 Aug; 10(4):451-63. PubMed ID: 11522229 [TBL] [Abstract][Full Text] [Related]
72. Tumor-Targeted Human T Cells Expressing CD28-Based Chimeric Antigen Receptors Circumvent CTLA-4 Inhibition. Condomines M; Arnason J; Benjamin R; Gunset G; Plotkin J; Sadelain M PLoS One; 2015; 10(6):e0130518. PubMed ID: 26110267 [TBL] [Abstract][Full Text] [Related]
73. Haploidentical Natural Killer Cells Infused before Allogeneic Stem Cell Transplantation for Myeloid Malignancies: A Phase I Trial. Lee DA; Denman CJ; Rondon G; Woodworth G; Chen J; Fisher T; Kaur I; Fernandez-Vina M; Cao K; Ciurea S; Shpall EJ; Champlin RE Biol Blood Marrow Transplant; 2016 Jul; 22(7):1290-1298. PubMed ID: 27090958 [TBL] [Abstract][Full Text] [Related]
74. Renal cell carcinoma-infiltrating natural killer cells express differential repertoires of activating and inhibitory receptors and are inhibited by specific HLA class I allotypes. Schleypen JS; Von Geldern M; Weiss EH; Kotzias N; Rohrmann K; Schendel DJ; Falk CS; Pohla H Int J Cancer; 2003 Oct; 106(6):905-12. PubMed ID: 12918068 [TBL] [Abstract][Full Text] [Related]
75. Retuning of Mouse NK Cells after Interference with MHC Class I Sensing Adjusts Self-Tolerance but Preserves Anticancer Response. Wagner AK; Wickström SL; Tallerico R; Salam S; Lakshmikanth T; Brauner H; Höglund P; Carbone E; Johansson MH; Kärre K Cancer Immunol Res; 2016 Feb; 4(2):113-23. PubMed ID: 26589766 [TBL] [Abstract][Full Text] [Related]
76. Targeting NK-cell checkpoints for cancer immunotherapy. Muntasell A; Ochoa MC; Cordeiro L; Berraondo P; López-Díaz de Cerio A; Cabo M; López-Botet M; Melero I Curr Opin Immunol; 2017 Apr; 45():73-81. PubMed ID: 28236750 [TBL] [Abstract][Full Text] [Related]
77. Chimeric antigen receptor (CAR)-modified NK cells against cancer: Opportunities and challenges. Wang L; Dou M; Ma Q; Yao R; Liu J Int Immunopharmacol; 2019 Sep; 74():105695. PubMed ID: 31254958 [TBL] [Abstract][Full Text] [Related]
78. Natural killer cells as a promising therapeutic target for cancer immunotherapy. Kim N; Lee HH; Lee HJ; Choi WS; Lee J; Kim HS Arch Pharm Res; 2019 Jul; 42(7):591-606. PubMed ID: 30895524 [TBL] [Abstract][Full Text] [Related]
79. Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy. Hu Y; Tian ZG; Zhang C Acta Pharmacol Sin; 2018 Feb; 39(2):167-176. PubMed ID: 28880014 [TBL] [Abstract][Full Text] [Related]