These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 32010173)
1. Defensive Responses of Tea Plants ( Zhao X; Chen S; Wang S; Shan W; Wang X; Lin Y; Su F; Yang Z; Yu X Front Plant Sci; 2019; 10():1705. PubMed ID: 32010173 [TBL] [Abstract][Full Text] [Related]
2. Formation of volatiles in response to tea green leafhopper (Empoasca onukii Matsuda) herbivory in tea plants: a multi-omics study. Liu H; Li S; Xiao G; Wang Q Plant Cell Rep; 2021 Apr; 40(4):753-766. PubMed ID: 33616702 [TBL] [Abstract][Full Text] [Related]
3. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda). Mei X; Liu X; Zhou Y; Wang X; Zeng L; Fu X; Li J; Tang J; Dong F; Yang Z Food Chem; 2017 Dec; 237():356-363. PubMed ID: 28764007 [TBL] [Abstract][Full Text] [Related]
4. Changes in Tea Plant Secondary Metabolite Profiles as a Function of Leafhopper Density and Damage. Scott ER; Li X; Wei JP; Kfoury N; Morimoto J; Guo MM; Agyei A; Robbat A; Ahmed S; Cash SB; Griffin TS; Stepp JR; Han WY; Orians CM Front Plant Sci; 2020; 11():636. PubMed ID: 32547579 [TBL] [Abstract][Full Text] [Related]
5. Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca onukii (Matsuda) damage. Jin S; Ren Q; Lian L; Cai X; Bian L; Luo Z; Li Z; Ye N; Wei R; He W; Liu W; Chen Z Planta; 2020 Jun; 252(1):10. PubMed ID: 32601995 [TBL] [Abstract][Full Text] [Related]
6. Transcriptomic and metabolomic analyses reveals keys genes and metabolic pathways in tea (Camellia sinensis) against six-spotted spider mite (Eotetranychus Sexmaculatus). Wang X; Xiang Y; Sun M; Xiong Y; Li C; Zhang T; Ma W; Wang Y; Liu X BMC Plant Biol; 2023 Dec; 23(1):638. PubMed ID: 38072959 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome and metabolome analysis reveal candidate genes and biochemicals involved in tea geometrid defense in Camellia sinensis. Wang WW; Zheng C; Hao WJ; Ma CL; Ma JQ; Ni DJ; Chen L PLoS One; 2018; 13(8):e0201670. PubMed ID: 30067831 [TBL] [Abstract][Full Text] [Related]
8. The involvement of a herbivore-induced acyl-CoA oxidase gene, CsACX1, in the synthesis of jasmonic acid and its expression in flower opening in tea plant (Camellia sinensis). Xin Z; Chen S; Ge L; Li X; Sun X Plant Physiol Biochem; 2019 Feb; 135():132-140. PubMed ID: 30529979 [TBL] [Abstract][Full Text] [Related]
9. Characterization of Terpene Synthase from Tea Green Leafhopper Being Involved in Formation of Geraniol in Tea ( Zhou Y; Liu X; Yang Z Biomolecules; 2019 Nov; 9(12):. PubMed ID: 31801241 [TBL] [Abstract][Full Text] [Related]
10. Wound- and pathogen-activated de novo JA synthesis using different ACX isozymes in tea plant (Camellia sinensis). Chen S; Lu X; Ge L; Sun X; Xin Z J Plant Physiol; 2019 Dec; 243():153047. PubMed ID: 31639538 [TBL] [Abstract][Full Text] [Related]
11. Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq. Wang YN; Tang L; Hou Y; Wang P; Yang H; Wei CL Funct Integr Genomics; 2016 Jul; 16(4):383-98. PubMed ID: 27098524 [TBL] [Abstract][Full Text] [Related]
12. Effect of Major Tea Insect Attack on Formation of Quality-Related Nonvolatile Specialized Metabolites in Tea ( Camellia sinensis) Leaves. Liao Y; Yu Z; Liu X; Zeng L; Cheng S; Li J; Tang J; Yang Z J Agric Food Chem; 2019 Jun; 67(24):6716-6724. PubMed ID: 31135151 [TBL] [Abstract][Full Text] [Related]
13. Alteration of local and systemic amino acids metabolism for the inducible defense in tea plant (Camellia sinensis) in response to leaf herbivory by Ectropis oblique. Li L; Li T; Jiang Y; Yang Y; Zhang L; Jiang Z; Wei C; Wan X; Yang H Arch Biochem Biophys; 2020 Apr; 683():108301. PubMed ID: 32057759 [TBL] [Abstract][Full Text] [Related]
14. Elicitation of biomolecules as host defense arsenals during insect attacks on tea plants (Camellia sinensis (L.) Kuntze). Naskar S; Roy C; Ghosh S; Mukhopadhyay A; Hazarika LK; Chaudhuri RK; Roy S; Chakraborti D Appl Microbiol Biotechnol; 2021 Oct; 105(19):7187-7199. PubMed ID: 34515843 [TBL] [Abstract][Full Text] [Related]
15. A Disease Resistance Elicitor Laminarin Enhances Tea Defense against a Piercing Herbivore Empoasca (Matsumurasca) onukii Matsuda. Xin Z; Cai X; Chen S; Luo Z; Bian L; Li Z; Ge L; Chen Z Sci Rep; 2019 Jan; 9(1):814. PubMed ID: 30692583 [TBL] [Abstract][Full Text] [Related]
16. Feeding on tea GH19 chitinase enhances tea defense responses induced by regurgitant derived from Ectropis grisescens. Lu X; Wang B; Cai X; Chen S; Chen Z; Xin Z Physiol Plant; 2020 Aug; 169(4):529-543. PubMed ID: 32196677 [TBL] [Abstract][Full Text] [Related]
17. Morphological, Physiological, and Biochemical Responses of Two Tea Cultivars to Empoasca onukii (Hemiptera: Cicadellidae) Infestation. Tian Y; Zhao Y; Zhang L; Mu W; Zhang Z J Econ Entomol; 2018 Apr; 111(2):899-908. PubMed ID: 29471494 [TBL] [Abstract][Full Text] [Related]
18. Chromosome-scale genome assembly of Wang F; Zhang B; Wen D; Liu R; Yao X; Chen Z; Mu R; Pei H; Liu M; Song B; Lu L Front Plant Sci; 2022; 13():1004387. PubMed ID: 36212364 [TBL] [Abstract][Full Text] [Related]
19. Involvement of histone deacetylase CsHDA2 in regulating ( Gu D; Wu S; Yu Z; Zeng L; Qian J; Zhou X; Yang Z Hortic Res; 2022; 9():uhac158. PubMed ID: 36324644 [TBL] [Abstract][Full Text] [Related]
20. Primary screening and application of repellent plant volatiles to control tea leafhopper, Empoasca onukii Matsuda. Cai X; Luo Z; Meng Z; Liu Y; Chu B; Bian L; Li Z; Xin Z; Chen Z Pest Manag Sci; 2020 Apr; 76(4):1304-1312. PubMed ID: 31595641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]