These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32010421)

  • 1. Growth of Supported Gold Nanoparticles in Aqueous Phase Studied by in Situ Transmission Electron Microscopy.
    Meijerink MJ; de Jong KP; Zečević J
    J Phys Chem C Nanomater Interfaces; 2020 Jan; 124(3):2202-2212. PubMed ID: 32010421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of gold nanoparticles in a free-standing ionic liquid triggered by heat and electron irradiation.
    Keller D; Henninen TR; Erni R
    Micron; 2019 Feb; 117():16-21. PubMed ID: 30419432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct In Situ TEM Visualization and Insight into the Facet-Dependent Sintering Behaviors of Gold on TiO
    Yuan W; Zhang D; Ou Y; Fang K; Zhu B; Yang H; Hansen TW; Wagner JB; Zhang Z; Gao Y; Wang Y
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16827-16831. PubMed ID: 30397982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM.
    Simonsen SB; Chorkendorff I; Dahl S; Skoglundh M; Sehested J; Helveg S
    J Am Chem Soc; 2010 Jun; 132(23):7968-75. PubMed ID: 20481529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with
    Wang M; Leff AC; Li Y; Woehl TJ
    ACS Nano; 2021 Feb; 15(2):2578-2588. PubMed ID: 33496576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sintering Behaviors of Supported Nanoparticles Related to Spatial Location by a Quasi-Four-Dimensional TEM.
    Liang C; Sun D; Lv H; Chu W; Duan Y; Bu Y; Liu J; Wang H
    Nano Lett; 2022 Aug; 22(16):6523-6529. PubMed ID: 35924868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attachment of iron oxide nanoparticles to carbon nanofibers studied by in-situ liquid phase transmission electron microscopy.
    Krans NA; Ahmad N; Alloyeau D; de Jong KP; Zečević J
    Micron; 2019 Feb; 117():40-46. PubMed ID: 30468967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relating rates of catalyst sintering to the disappearance of individual nanoparticles during Ostwald ripening.
    Challa SR; Delariva AT; Hansen TW; Helveg S; Sehested J; Hansen PL; Garzon F; Datye AK
    J Am Chem Soc; 2011 Dec; 133(51):20672-5. PubMed ID: 22087502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of the initial process of Ostwald ripening using spherical aberration-corrected transmission electron microscopy.
    Yoshida K; Bright A; Tanaka N
    J Electron Microsc (Tokyo); 2012 Apr; 61(2):99-103. PubMed ID: 22366031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ electron microscopy studies of the sintering of palladium nanoparticles on alumina during catalyst regeneration processes.
    Liu RJ; Crozier PA; Smith CM; Hucul DA; Blackson J; Salaita G
    Microsc Microanal; 2004 Feb; 10(1):77-85. PubMed ID: 15306069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative In Situ Visualization of Thermal Effects on the Formation of Gold Nanocrystals in Solution.
    Khelfa A; Nelayah J; Amara H; Wang G; Ricolleau C; Alloyeau D
    Adv Mater; 2021 Sep; 33(38):e2102514. PubMed ID: 34338365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time atomistic simulation of the Ostwald ripening of TiO
    Zhu B; Qi R; Yuan L; Gao Y
    Nanoscale; 2020 Oct; 12(37):19142-19148. PubMed ID: 32936163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ study of nucleation and growth dynamics of Au nanoparticles on MoS
    Song B; He K; Yuan Y; Sharifi-Asl S; Cheng M; Lu J; Saidi WA; Shahbazian-Yassar R
    Nanoscale; 2018 Aug; 10(33):15809-15818. PubMed ID: 30102314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Dynamics of Galvanic Replacement Reactions of Silver Nanocubes and Au Studied by Liquid-Cell Transmission Electron Microscopy.
    Tan SF; Lin G; Bosman M; Mirsaidov U; Nijhuis CA
    ACS Nano; 2016 Aug; 10(8):7689-95. PubMed ID: 27389989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic Resolution Observation of a Size-Dependent Change in the Ripening Modes of Mass-Selected Au Nanoclusters Involved in CO Oxidation.
    Hu KJ; Plant SR; Ellis PR; Brown CM; Bishop PT; Palmer RE
    J Am Chem Soc; 2015 Dec; 137(48):15161-8. PubMed ID: 26544914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ostwald-Driven Phase Separation in Bimetallic Nanoparticle Assemblies.
    Prévot G; Nguyen NT; Alloyeau D; Ricolleau C; Nelayah J
    ACS Nano; 2016 Apr; 10(4):4127-33. PubMed ID: 26989906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Large-Scale Array of Ordered Graphene-Sandwiched Chambers for Quantitative Liquid-Phase Transmission Electron Microscopy.
    Lim K; Bae Y; Jeon S; Kim K; Kim BH; Kim J; Kang S; Heo T; Park J; Lee WC
    Adv Mater; 2020 Oct; 32(39):e2002889. PubMed ID: 32844520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth.
    Sutter EA; Sutter PW
    J Am Chem Soc; 2014 Dec; 136(48):16865-70. PubMed ID: 25407028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the Thermal Stability of (3-Mercaptopropyl)-trimethoxysilane-Protected Au
    Sudheeshkumar V; Soong C; Dogel S; Scott RWJ
    Small; 2021 Jul; 17(27):e2004539. PubMed ID: 33511742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.