These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 3201099)
21. Protein origin of the volatile fatty acids isobutyrate and isovalerate in human stool. Zarling EJ; Ruchim MA J Lab Clin Med; 1987 May; 109(5):566-70. PubMed ID: 3572204 [TBL] [Abstract][Full Text] [Related]
22. Colonic fermentation as affected by antibiotics and acidic pH: Application of an in vitro model. Bender A; Breves G; Stein J; Leonhard-Marek S; Schröder B; Winckler C Z Gastroenterol; 2001 Nov; 39(11):911-8. PubMed ID: 11778150 [TBL] [Abstract][Full Text] [Related]
23. Starch-entrapped microspheres show a beneficial fermentation profile and decrease in potentially harmful bacteria during in vitro fermentation in faecal microbiota obtained from patients with inflammatory bowel disease. Rose DJ; Venema K; Keshavarzian A; Hamaker BR Br J Nutr; 2010 May; 103(10):1514-24. PubMed ID: 20021704 [TBL] [Abstract][Full Text] [Related]
25. Influences of dietary adaptation and source of resistant starch on short-chain fatty acids in the hindgut of rats. Henningsson AM; Margareta E; Nyman GL; Björck IM Br J Nutr; 2003 Mar; 89(3):319-28. PubMed ID: 12628027 [TBL] [Abstract][Full Text] [Related]
26. Organic anions and the diarrhea of inflammatory bowel disease. Vernia P; Gnaedinger A; Hauck W; Breuer RI Dig Dis Sci; 1988 Nov; 33(11):1353-8. PubMed ID: 3180970 [TBL] [Abstract][Full Text] [Related]
27. Different distribution of mast cells and macrophages in colonic mucosa of patients with collagenous colitis and inflammatory bowel disease. Nishida Y; Murase K; Isomoto H; Furusu H; Mizuta Y; Riddell RH; Kohno S Hepatogastroenterology; 2002; 49(45):678-82. PubMed ID: 12063968 [TBL] [Abstract][Full Text] [Related]
28. Differential fermentation of glucose-based carbohydrates in vitro by human faecal bacteria--a study of pyrodextrinised starches from different sources. Laurentin A; Edwards CA Eur J Nutr; 2004 Jun; 43(3):183-9. PubMed ID: 15168041 [TBL] [Abstract][Full Text] [Related]
29. In vitro batch cultures of gut microbiota from healthy and ulcerative colitis (UC) subjects suggest that sulphate-reducing bacteria levels are raised in UC and by a protein-rich diet. Khalil NA; Walton GE; Gibson GR; Tuohy KM; Andrews SC Int J Food Sci Nutr; 2014 Feb; 65(1):79-88. PubMed ID: 23941288 [TBL] [Abstract][Full Text] [Related]
30. Fecal lactoferrin as a marker for disease activity in inflammatory bowel disease: comparison with other neutrophil-derived proteins. Sugi K; Saitoh O; Hirata I; Katsu K Am J Gastroenterol; 1996 May; 91(5):927-34. PubMed ID: 8633583 [TBL] [Abstract][Full Text] [Related]
31. Colonic health: fermentation and short chain fatty acids. Wong JM; de Souza R; Kendall CW; Emam A; Jenkins DJ J Clin Gastroenterol; 2006 Mar; 40(3):235-43. PubMed ID: 16633129 [TBL] [Abstract][Full Text] [Related]
32. Faecal short chain fatty acids in healthy subjects participating in a randomised controlled trial examining a soluble highly viscous polysaccharide versus control. Reimer RA; Pelletier X; Carabin IG; Lyon MR; Gahler RJ; Wood S J Hum Nutr Diet; 2012 Aug; 25(4):373-7. PubMed ID: 22320902 [TBL] [Abstract][Full Text] [Related]
33. The effect of lactulose, pectin, arabinogalactan and cellulose on the production of organic acids and metabolism of ammonia by intestinal bacteria in a faecal incubation system. Vince AJ; McNeil NI; Wager JD; Wrong OM Br J Nutr; 1990 Jan; 63(1):17-26. PubMed ID: 2317475 [TBL] [Abstract][Full Text] [Related]
34. The metabolic activity of fecal microbiota from healthy individuals and patients with inflammatory bowel disease. van Nuenen MH; Venema K; van der Woude JC; Kuipers EJ Dig Dis Sci; 2004 Mar; 49(3):485-91. PubMed ID: 15139503 [TBL] [Abstract][Full Text] [Related]
35. Fermentation RS3 derived from sago and rice starch with Clostridium butyricum BCC B2571 or Eubacterium rectale DSM 17629. Purwani EY; Purwadaria T; Suhartono MT Anaerobe; 2012 Feb; 18(1):55-61. PubMed ID: 21979490 [TBL] [Abstract][Full Text] [Related]
36. Faecal concentrations and production rates of short chain fatty acids in normal neonates. Rasmussen HS; Holtug K; Ynggård C; Mortensen PB Acta Paediatr Scand; 1988 May; 77(3):365-8. PubMed ID: 3389128 [TBL] [Abstract][Full Text] [Related]
37. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. Macfarlane GT; Macfarlane S J Clin Gastroenterol; 2011 Nov; 45 Suppl():S120-7. PubMed ID: 21992950 [TBL] [Abstract][Full Text] [Related]
38. Short-chain fatty acids, lactate, and ammonia in ileorectal and ileal pouch contents: a model of cecal fermentation. Nordgaard-Andersen I; Clausen MR; Mortensen PB JPEN J Parenter Enteral Nutr; 1993; 17(4):324-31. PubMed ID: 8271356 [TBL] [Abstract][Full Text] [Related]