BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 32011120)

  • 41. An Extreme Learning Machine-Based Neuromorphic Tactile Sensing System for Texture Recognition.
    Rasouli M; Chen Y; Basu A; Kukreja SL; Thakor NV
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):313-325. PubMed ID: 29570059
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flexible wearable sensors - an update in view of touch-sensing.
    Vu CC; Kim SJ; Kim J
    Sci Technol Adv Mater; 2021 Mar; 22(1):26-36. PubMed ID: 33854405
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Behavior-Learned Cross-Reactive Sensor Matrix for Intelligent Skin Perception.
    Lee JH; Heo JS; Kim YJ; Eom J; Jung HJ; Kim JW; Kim I; Park HH; Mo HS; Kim YH; Park SK
    Adv Mater; 2020 Jun; 32(22):e2000969. PubMed ID: 32310332
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A low-power and flexible bioinspired artificial sensory neuron capable of tactile perceptual and associative learning.
    Xia Q; Qin Y; Zheng A; Qiu P
    J Mater Chem B; 2023 Feb; 11(7):1469-1477. PubMed ID: 36655946
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cuneate spiking neural network learning to classify naturalistic texture stimuli under varying sensing conditions.
    Rongala UB; Mazzoni A; Spanne A; Jörntell H; Oddo CM
    Neural Netw; 2020 Mar; 123():273-287. PubMed ID: 31887687
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Graphene Nanostructure-Based Tactile Sensors for Electronic Skin Applications.
    Miao P; Wang J; Zhang C; Sun M; Cheng S; Liu H
    Nanomicro Lett; 2019 Sep; 11(1):71. PubMed ID: 34138011
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin.
    Liu C; Huang N; Xu F; Tong J; Chen Z; Gui X; Fu Y; Lao C
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966663
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability.
    Gao Y; Yu L; Yeo JC; Lim CT
    Adv Mater; 2020 Apr; 32(15):e1902133. PubMed ID: 31339200
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Epidermis-Inspired Ultrathin 3D Cellular Sensor Array for Self-Powered Biomedical Monitoring.
    Yan C; Deng W; Jin L; Yang T; Wang Z; Chu X; Su H; Chen J; Yang W
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41070-41075. PubMed ID: 30398047
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Wearable and Semitransparent Pressure-Sensitive Light-Emitting Sensor Based on Electrochemiluminescence.
    Kwon DK; Myoung JM
    ACS Nano; 2020 Jul; 14(7):8716-8723. PubMed ID: 32644780
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures.
    Zan G; Wu Q
    Adv Mater; 2016 Mar; 28(11):2099-147. PubMed ID: 26729639
    [TBL] [Abstract][Full Text] [Related]  

  • 52. First Decade of Interfacial Iontronic Sensing: From Droplet Sensors to Artificial Skins.
    Chang Y; Wang L; Li R; Zhang Z; Wang Q; Yang J; Guo CF; Pan T
    Adv Mater; 2021 Feb; 33(7):e2003464. PubMed ID: 33346388
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent Advances in Bioinspired Hydrogels: Materials, Devices, and Biosignal Computing.
    Zhu Y; Haghniaz R; Hartel MC; Mou L; Tian X; Garrido PR; Wu Z; Hao T; Guan S; Ahadian S; Kim HJ; Jucaud V; Dokmeci MR; Khademhosseini A
    ACS Biomater Sci Eng; 2023 May; 9(5):2048-2069. PubMed ID: 34784170
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Large-Area, Crosstalk-Free, Flexible Tactile Sensor Matrix Pixelated by Mesh Layers.
    Bae K; Jeong J; Choi J; Pyo S; Kim J
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12259-12267. PubMed ID: 33683114
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel Flexible Wearable Sensor Materials and Signal Processing for Vital Sign and Human Activity Monitoring.
    Servati A; Zou L; Wang ZJ; Ko F; Servati P
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28703744
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges.
    Ding Y; Xu T; Onyilagha O; Fong H; Zhu Z
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6685-6704. PubMed ID: 30689335
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomimetic strategies and technologies for artificial tactile sensory systems.
    Wang J; Liu X; Li R; Fan Y
    Trends Biotechnol; 2023 Jul; 41(7):951-964. PubMed ID: 36658007
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Graphene-Based Nanomaterials for Flexible and Wearable Supercapacitors.
    Huang L; Santiago D; Loyselle P; Dai L
    Small; 2018 Oct; 14(43):e1800879. PubMed ID: 30009468
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Dual-Responsive Artificial Skin for Tactile and Touchless Interfaces.
    Wang HL; Chen T; Zhang B; Wang G; Yang X; Wu K; Wang Y
    Small; 2023 May; 19(21):e2206830. PubMed ID: 36700923
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Flexible Artificial Sensory Nerve Enabled by Nanoparticle-Assembled Synaptic Devices for Neuromorphic Tactile Recognition.
    Jiang C; Liu J; Yang L; Gong J; Wei H; Xu W
    Adv Sci (Weinh); 2022 Aug; 9(24):e2106124. PubMed ID: 35686320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.