These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 32011795)
1. Constraining the formation of authigenic carbonates in a seepage-affected cold-water coral mound by lipid biomarkers. Feenstra EJ; Birgel D; Heindel K; Wehrmann LM; Jaramillo-Vogel D; Grobéty B; Frank N; Hancock LG; Van Rooij D; Peckmann J; Foubert A Geobiology; 2020 Mar; 18(2):185-206. PubMed ID: 32011795 [TBL] [Abstract][Full Text] [Related]
2. Metalloenzyme signatures in authigenic carbonates from the Chukchi Borderlands in the western Arctic Ocean. Lee DH; Kim JH; Lee YM; Bayon G; Kim D; Joe YJ; Wang X; Shin KH; Jin YK Sci Rep; 2022 Oct; 12(1):16597. PubMed ID: 36198754 [TBL] [Abstract][Full Text] [Related]
3. Biodiversity on the Rocks: Macrofauna Inhabiting Authigenic Carbonate at Costa Rica Methane Seeps. Levin LA; Mendoza GF; Grupe BM; Gonzalez JP; Jellison B; Rouse G; Thurber AR; Waren A PLoS One; 2015; 10(7):e0131080. PubMed ID: 26158723 [TBL] [Abstract][Full Text] [Related]
4. Lipidomic diversity and proxy implications of archaea from cold seep sediments of the South China Sea. Zhang T; He W; Liang Q; Zheng F; Xiao X; Zeng Z; Zhou J; Yao W; Chen H; Zhu Y; Zhao J; Zheng Y; Zhang C Front Microbiol; 2023; 14():1241958. PubMed ID: 37954235 [TBL] [Abstract][Full Text] [Related]
5. Interpreting Molecular and Isotopic Biosignatures in Methane-Derived Authigenic Carbonates in the Light of a Potential Carbon Cycle in the Icy Moons. Carrizo D; de Dios-Cubillas A; Sánchez-García L; López I; Prieto-Ballesteros O Astrobiology; 2022 May; 22(5):552-567. PubMed ID: 35325553 [TBL] [Abstract][Full Text] [Related]
6. Microbial diversity of two cold seep systems in gas hydrate-bearing sediments in the South China Sea. Cui H; Su X; Chen F; Holland M; Yang S; Liang J; Su P; Dong H; Hou W Mar Environ Res; 2019 Feb; 144():230-239. PubMed ID: 30732863 [TBL] [Abstract][Full Text] [Related]
8. Microbially induced precipitation of silica by anaerobic methane-oxidizing consortia and implications for microbial fossil preservation. Osorio-Rodriguez D; Metcalfe KS; McGlynn SE; Yu H; Dekas AE; Ellisman M; Deerinck T; Aristilde L; Grotzinger JP; Orphan VJ Proc Natl Acad Sci U S A; 2023 Dec; 120(51):e2302156120. PubMed ID: 38079551 [TBL] [Abstract][Full Text] [Related]
9. Linking sedimentary sulfur and iron biogeochemistry to growth patterns of a cold-water coral mound in the Porcupine Basin, S.W. Ireland (IODP Expedition 307). Wehrmann LM; Titschack J; Böttcher ME; Ferdelman TG Geobiology; 2015 Sep; 13(5):424-42. PubMed ID: 26059346 [TBL] [Abstract][Full Text] [Related]
10. Microbial methane turnover at Marmara Sea cold seeps: a combined 16S rRNA and lipid biomarker investigation. Chevalier N; Bouloubassi I; Birgel D; Taphanel MH; López-García P Geobiology; 2013 Jan; 11(1):55-71. PubMed ID: 23205581 [TBL] [Abstract][Full Text] [Related]
11. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Parkes RJ; Cragg BA; Banning N; Brock F; Webster G; Fry JC; Hornibrook E; Pancost RD; Kelly S; Knab N; Jørgensen BB; Rinna J; Weightman AJ Environ Microbiol; 2007 May; 9(5):1146-61. PubMed ID: 17472631 [TBL] [Abstract][Full Text] [Related]
12. In vitro study of lipid biosynthesis in an anaerobically methane-oxidizing microbial mat. Blumenberg M; Seifert R; Nauhaus K; Pape T; Michaelis W Appl Environ Microbiol; 2005 Aug; 71(8):4345-51. PubMed ID: 16085823 [TBL] [Abstract][Full Text] [Related]
13. Characteristics of Authigenic Minerals around the Sulfate-Methane Transition Zone in the Methane-Rich Sediments of the Northern South China Sea: Inorganic Geochemical Evidence. Wu D; Sun T; Xie R; Pan M; Chen X; Ye Y; Liu L; Wu N Int J Environ Res Public Health; 2019 Jun; 16(13):. PubMed ID: 31261753 [TBL] [Abstract][Full Text] [Related]
14. Methane seepage intensity distinguish microbial communities in sediments at the Mid-Okinawa Trough. Xin Y; Wu N; Sun Z; Wang H; Chen Y; Xu C; Geng W; Cao H; Zhang X; Zhai B; Yan D Sci Total Environ; 2022 Dec; 851(Pt 2):158213. PubMed ID: 36028040 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Archaeal and Bacterial Diversity in Methane Seep Carbonate Nodules and Host Sediments, Eel River Basin and Hydrate Ridge, USA. Mason OU; Case DH; Naehr TH; Lee RW; Thomas RB; Bailey JV; Orphan VJ Microb Ecol; 2015 Oct; 70(3):766-84. PubMed ID: 25947096 [TBL] [Abstract][Full Text] [Related]
16. Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea. Wang J; Hua M; Cai C; Hu J; Wang J; Yang H; Ma F; Qian H; Zheng P; Hu B Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709818 [TBL] [Abstract][Full Text] [Related]
17. Enrichment of sulfate reducing anaerobic methane oxidizing community dominated by ANME-1 from Ginsburg Mud Volcano (Gulf of Cadiz) sediment in a biotrickling filter. Bhattarai S; Cassarini C; Rene ER; Zhang Y; Esposito G; Lens PNL Bioresour Technol; 2018 Jul; 259():433-441. PubMed ID: 29602106 [TBL] [Abstract][Full Text] [Related]
18. Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane. Wegener G; Krukenberg V; Ruff SE; Kellermann MY; Knittel K Front Microbiol; 2016; 7():46. PubMed ID: 26870011 [TBL] [Abstract][Full Text] [Related]
19. Expanding the repertoire of electron acceptors for the anaerobic oxidation of methane in carbonates in the Atlantic and Pacific Ocean. Beckmann S; Farag IF; Zhao R; Christman GD; Prouty NG; Biddle JF ISME J; 2021 Sep; 15(9):2523-2536. PubMed ID: 33712702 [TBL] [Abstract][Full Text] [Related]
20. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Orcutt B; Samarkin V; Boetius A; Joye S Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]