BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32012050)

  • 21. A Bayesian spatio-temporal approach for real-time detection of disease outbreaks: a case study.
    Zou J; Karr AF; Datta G; Lynch J; Grannis S
    BMC Med Inform Decis Mak; 2014 Dec; 14():108. PubMed ID: 25476843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Infodemiology: tracking flu-related searches on the web for syndromic surveillance.
    Eysenbach G
    AMIA Annu Symp Proc; 2006; 2006():244-8. PubMed ID: 17238340
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved Real-Time Influenza Surveillance: Using Internet Search Data in Eight Latin American Countries.
    Clemente L; Lu F; Santillana M
    JMIR Public Health Surveill; 2019 Apr; 5(2):e12214. PubMed ID: 30946017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tracking search engine queries for suicide in the United Kingdom, 2004-2013.
    Arora VS; Stuckler D; McKee M
    Public Health; 2016 Aug; 137():147-53. PubMed ID: 26976489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Googling in anatomy education: Can google trends inform educators of national online search patterns of anatomical syllabi?
    Phelan N; Davy S; O'Keeffe GW; Barry DS
    Anat Sci Educ; 2017 Mar; 10(2):152-159. PubMed ID: 27547967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Google Trends Predicts Present and Future Plague Cases During the Plague Outbreak in Madagascar: Infodemiological Study.
    Bragazzi NL; Mahroum N
    JMIR Public Health Surveill; 2019 Mar; 5(1):e13142. PubMed ID: 30763255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Forecasting state-level premature deaths from alcohol, drugs, and suicides using Google Trends data.
    Parker J; Cuthbertson C; Loveridge S; Skidmore M; Dyar W
    J Affect Disord; 2017 Apr; 213():9-15. PubMed ID: 28171770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CDC National Health Report: leading causes of morbidity and mortality and associated behavioral risk and protective factors--United States, 2005-2013.
    Johnson NB; Hayes LD; Brown K; Hoo EC; Ethier KA;
    MMWR Suppl; 2014 Oct; 63(4):3-27. PubMed ID: 25356673
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluating Google Flu Trends in Latin America: Important Lessons for the Next Phase of Digital Disease Detection.
    Pollett S; Boscardin WJ; Azziz-Baumgartner E; Tinoco YO; Soto G; Romero C; Kok J; Biggerstaff M; Viboud C; Rutherford GW
    Clin Infect Dis; 2017 Jan; 64(1):34-41. PubMed ID: 27678084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surveillance Tools Emerging From Search Engines and Social Media Data for Determining Eye Disease Patterns.
    Deiner MS; Lietman TM; McLeod SD; Chodosh J; Porco TC
    JAMA Ophthalmol; 2016 Sep; 134(9):1024-30. PubMed ID: 27416554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Google trends: a web-based tool for real-time surveillance of disease outbreaks.
    Carneiro HA; Mylonakis E
    Clin Infect Dis; 2009 Nov; 49(10):1557-64. PubMed ID: 19845471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Web search activity data accurately predict population chronic disease risk in the USA.
    Nguyen T; Tran T; Luo W; Gupta S; Rana S; Phung D; Nichols M; Millar L; Venkatesh S; Allender S
    J Epidemiol Community Health; 2015 Jul; 69(7):693-9. PubMed ID: 25805603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Digital epidemiology: assessment of measles infection through Google Trends mechanism in Italy.
    Santangelo OE; Provenzano S; Piazza D; Giordano D; Calamusa G; Firenze A
    Ann Ig; 2019; 31(4):385-391. PubMed ID: 31268123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rosacea and Associated Comorbidities: A Google Search Trends Analysis.
    Marchitto MC; Chien AL
    J Clin Aesthet Dermatol; 2020 Jul; 13(7):36-40. PubMed ID: 32983335
    [No Abstract]   [Full Text] [Related]  

  • 35. Google Flu Trends Spatial Variability Validated Against Emergency Department Influenza-Related Visits.
    Klembczyk JJ; Jalalpour M; Levin S; Washington RE; Pines JM; Rothman RE; Dugas AF
    J Med Internet Res; 2016 Jun; 18(6):e175. PubMed ID: 27354313
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Twitter mining for fine-grained syndromic surveillance.
    Velardi P; Stilo G; Tozzi AE; Gesualdo F
    Artif Intell Med; 2014 Jul; 61(3):153-63. PubMed ID: 24613716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The reliability of tweets as a supplementary method of seasonal influenza surveillance.
    Aslam AA; Tsou MH; Spitzberg BH; An L; Gawron JM; Gupta DK; Peddecord KM; Nagel AC; Allen C; Yang JA; Lindsay S
    J Med Internet Res; 2014 Nov; 16(11):e250. PubMed ID: 25406040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ID-Viewer: a visual analytics architecture for infectious diseases surveillance and response management in Pakistan.
    Ali MA; Ahsan Z; Amin M; Latif S; Ayyaz A; Ayyaz MN
    Public Health; 2016 May; 134():72-85. PubMed ID: 26880489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.