These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32012567)

  • 1. Precise absolute Seebeck coefficient measurement and uncertainty analysis using high-Tc superconductors as a reference.
    Amagai Y; Shimazaki T; Okawa K; Kawae T; Fujiki H; Kaneko NH
    Rev Sci Instrum; 2020 Jan; 91(1):014903. PubMed ID: 32012567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields.
    Ma H; Liu H; Liu F; Zhang H; Ci L; Shi Y; Lei L
    Rev Sci Instrum; 2018 Jan; 89(1):015102. PubMed ID: 29390670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncertainty analysis for common Seebeck and electrical resistivity measurement systems.
    Mackey J; Dynys F; Sehirlioglu A
    Rev Sci Instrum; 2014 Aug; 85(8):085119. PubMed ID: 25173324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical Current Density and Meissner Effect of Smart Meta-Superconductor MgB
    Chen H; Li Y; Qi Y; Wang M; Zou H; Zhao X
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement system of the Seebeck coefficient or of the electrical resistivity at high temperature.
    Rouleau O; Alleno E
    Rev Sci Instrum; 2013 Oct; 84(10):105103. PubMed ID: 24182159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple, reversible gradient Seebeck coefficient measurement system for 300-600 K with COMSOL simulations.
    Biswas S; Dutt AS; Sebastian N; Kamble VB
    Rev Sci Instrum; 2021 Apr; 92(4):044903. PubMed ID: 34243397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-State Electrochemical Switch of Superconductor-Metal-Insulators.
    Zhang X; Kim G; Yang Q; Wei J; Feng B; Ikuhara Y; Ohta H
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54204-54209. PubMed ID: 34734522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillatory Nernst effect in Pt|ferrite|cuprate-superconductor trilayer films.
    Shiomi Y; Lustikova J; Saitoh E
    Sci Rep; 2017 Jul; 7(1):5358. PubMed ID: 28706217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Proton Irradiation on Thin-Film YBa
    Fogt J; Weeda H; Harrison T; Miles N; Cho K
    Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of magnetic exchange in ferromagnet-superconductor La2/3Ca1/3MnO3/YBa2Cu3O7 bilayers.
    Giblin SR; Taylor JW; Duffy JA; Butchers MW; Utfeld C; Dugdale SB; Nakamura T; Visani C; Santamaria J
    Phys Rev Lett; 2012 Sep; 109(13):137005. PubMed ID: 23030115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant thermoelectric power factor in ultrathin FeSe superconductor.
    Shimizu S; Shiogai J; Takemori N; Sakai S; Ikeda H; Arita R; Nojima T; Tsukazaki A; Iwasa Y
    Nat Commun; 2019 Feb; 10(1):825. PubMed ID: 30778077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the high-temperature Seebeck coefficient of thin films by means of an epitaxially regrown thermometric reference material.
    Ramu AT; Mages P; Zhang C; Imamura JT; Bowers JE
    Rev Sci Instrum; 2012 Sep; 83(9):093905. PubMed ID: 23020392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncertainty of measurement for 14 immunoassay analytes: application to laboratory result interpretation.
    Çubukçu HC; Yavuz Ö; Devrim E
    Scand J Clin Lab Invest; 2019; 79(1-2):117-122. PubMed ID: 30626224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrathin Bismuth Film on High-Temperature Cuprate Superconductor Bi
    Shimamura N; Sugawara K; Sucharitakul S; Souma S; Iwaya K; Nakayama K; Trang CX; Yamauchi K; Oguchi T; Kudo K; Noji T; Koike Y; Takahashi T; Hanaguri T; Sato T
    ACS Nano; 2018 Nov; 12(11):10977-10983. PubMed ID: 30335952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colossal positive Seebeck coefficient and low thermal conductivity in reduced TiO(2).
    Tang J; Wang W; Zhao GL; Li Q
    J Phys Condens Matter; 2009 May; 21(20):205703. PubMed ID: 21825536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apparatus for the high temperature measurement of the Seebeck coefficient in thermoelectric materials.
    Martin J
    Rev Sci Instrum; 2012 Jun; 83(6):065101. PubMed ID: 22755656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of the Seebeck coefficient under high pressure by dual heating.
    Yoshino T; Wang R; Gomi H; Mori Y
    Rev Sci Instrum; 2020 Mar; 91(3):035115. PubMed ID: 32259952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A setup for Seebeck coefficient measurement through controlled heat pulses.
    Ahad A; Shukla DK
    Rev Sci Instrum; 2019 Nov; 90(11):116101. PubMed ID: 31779417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic structure and superconductivity of FeSe-related superconductors.
    Liu X; Zhao L; He S; He J; Liu D; Mou D; Shen B; Hu Y; Huang J; Zhou XJ
    J Phys Condens Matter; 2015 May; 27(18):183201. PubMed ID: 25879999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate measurement of Seebeck coefficient.
    Liu J; Zhang Y; Wang Z; Li M; Su W; Zhao M; Huang S; Xia S; Wang C
    Rev Sci Instrum; 2016 Jun; 87(6):064701. PubMed ID: 27370476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.