These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32012603)

  • 1. XRISE-M: X-radiography facility for solidification and diffusion studies of alloys aboard sounding rockets.
    Kargl F; Drescher J; Dreißigacker C; Balter M; Becker M; Wegener M; Sondermann E
    Rev Sci Instrum; 2020 Jan; 91(1):013906. PubMed ID: 32012603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ARTEC-A furnace module for directional solidification and quenching experiments in microgravity.
    Balter M; Neumann C; Bräuer D; Dreißigacker C; Steinbach S
    Rev Sci Instrum; 2019 Dec; 90(12):125117. PubMed ID: 31893778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-isothermal furnace for in situ and real time X-ray radiography solidification experiments.
    Becker M; Dreißigacker C; Klein S; Kargl F
    Rev Sci Instrum; 2015 Jun; 86(6):063904. PubMed ID: 26133847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-radiography front tracking gradient furnace for directional solidification of bulk Al-alloys.
    Jafarizadeh-Koohbanani A; Steinbach S; Drescher J; Frenzel J; Kargl F
    Rev Sci Instrum; 2023 Aug; 94(8):. PubMed ID: 38065170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-situ X-ray monitoring of solidification and related processes of metal alloys.
    Reinhart G; Browne DJ; Kargl F; García-Moreno F; Becker M; Sondermann E; Binder K; Mullen JS; Zimmermann G; Mathiesen RH; Sillekens WH; Nguyen-Thi H
    NPJ Microgravity; 2023 Sep; 9(1):70. PubMed ID: 37673938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isothermal furnace for long-term in situ and real-time X-radiography solidification experiments.
    Wegener M; Dreißigacker C; Becker M; Kargl F
    Rev Sci Instrum; 2021 Mar; 92(3):035114. PubMed ID: 33819986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of gravity on composition uniformity and microstructure in immiscible Al-In alloys.
    Andrews JB; Hayes LJ
    Ann N Y Acad Sci; 2002 Oct; 974():102-9. PubMed ID: 12446317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling diffusion-governed solidification of ternary alloys - Part 1: Coupling solidification kinetics with thermodynamics.
    Wu M; Li J; Ludwig A; Kharicha A
    Comput Mater Sci; 2013 Nov; 79():830-840. PubMed ID: 27570372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling diffusion-governed solidification of ternary alloys - Part 2: Macroscopic transport phenomena and macrosegregation.
    Wu M; Li J; Ludwig A; Kharicha A
    Comput Mater Sci; 2014 Sep; 92():267-285. PubMed ID: 27570373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ studies of mass transport in liquid alloys by means of neutron radiography.
    Kargl F; Engelhardt M; Yang F; Weis H; Schmakat P; Schillinger B; Griesche A; Meyer A
    J Phys Condens Matter; 2011 Jun; 23(25):254201. PubMed ID: 21654050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of local solidification and remelting during dendrite coarsening - modeling and comparison with experiments.
    Zhang Q; Fang H; Xue H; Pan S; Rettenmayr M; Zhu M
    Sci Rep; 2017 Dec; 7(1):17809. PubMed ID: 29259208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Multicomponent Alloy Solidification with Allowance for the Local Nonequilibrium and Cross-Diffusion Effects.
    Sobolev SL; Tokmachev MG; Kolobov YR
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Onsager approach to the one-dimensional solidification problem and its relation to the phase-field description.
    Brener EA; Temkin DE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031601. PubMed ID: 22587102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. XRD investigation of binary alloy solidification.
    Montanari R; Gauzzi F
    Ann N Y Acad Sci; 2009 Apr; 1161():407-15. PubMed ID: 19426334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solidification furnace for in situ observation of bulk transparent systems and image analysis methods.
    Mota FL; Medjkoune M; Littles LS; Karma A; Bergeon N
    Rev Sci Instrum; 2023 Jun; 94(6):. PubMed ID: 37862547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion.
    Ramirez JC; Beckermann C; Karma A; Diepers HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051607. PubMed ID: 15244829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative phase-field modeling of nonisothermal solidification in dilute multicomponent alloys with arbitrary diffusivities.
    Ohno M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051603. PubMed ID: 23214789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal and chemical diffusion in the rapid solidification of binary alloys.
    Conti M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):642-50. PubMed ID: 11046306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of hydrostatic pressure and wall effect in solidification of TC8 alloy.
    Luo X; Wang Y; Li Y
    NPJ Microgravity; 2019; 5():23. PubMed ID: 31633010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freezing Shrinkage Dynamics and Surface Dendritic Growth of Floating Refractory Alloy Droplets in Outer Space.
    Wang H; Liao H; Hu L; Zheng C; Chang J; Liu D; Li M; Zhao J; Xie W; Wei B
    Adv Mater; 2024 Jun; 36(24):e2313162. PubMed ID: 38461368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.