These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32012732)

  • 41. Biosynthesis of Silver Nanoparticles from
    Chinnasamy G; Chandrasekharan S; Bhatnagar S
    Int J Nanomedicine; 2019; 14():9823-9836. PubMed ID: 31849471
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Antifungal mechanism of nanosilver biosynthesized with Trichoderma longibrachiatum and its potential to control muskmelon Fusarium wilt.
    Liu X; Li T; Cui X; Tao R; Gao Z
    Sci Rep; 2024 Aug; 14(1):20242. PubMed ID: 39215137
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Green Synthesis of Silver Nanoparticles with
    Dėnė L; Chrapačienė S; Laurinaitytė G; Rudinskaitė A; Viškelis J; Viškelis P; Balčiūnaitienė A
    Plants (Basel); 2024 Jun; 13(12):. PubMed ID: 38931043
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biocidal Activity of Metal Nanoparticles Synthesized by
    El Sayed MT; El-Sayed ASA
    J Microbiol Biotechnol; 2020 Feb; 30(2):226-236. PubMed ID: 31474084
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Graphene Oxide-Silver Nanocomposite: Novel Agricultural Antifungal Agent against Fusarium graminearum for Crop Disease Prevention.
    Chen J; Sun L; Cheng Y; Lu Z; Shao K; Li T; Hu C; Han H
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):24057-70. PubMed ID: 27563750
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antifungal Activity of Nanobiocomposite Films Based on Silver Nanoparticles Obtained Through Green Synthesis.
    Mallmann EJJ; Cunha FA; Agressott EVH; de Menezes FL; de Cássia Carvalho Barbosa R; Martins RT; Dos Santos Oliveira Cunha MDC; Queiroz MVO; Coutinho HDM; de Vasconcelos JEL; Fechine PBA
    Curr Microbiol; 2023 Jun; 80(8):251. PubMed ID: 37351656
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Discovery of Frenolicin B as Potential Agrochemical Fungicide for Controlling
    Han C; Yu Z; Zhang Y; Wang Z; Zhao J; Huang SX; Ma Z; Wen Z; Liu C; Xiang W
    J Agric Food Chem; 2021 Feb; 69(7):2108-2117. PubMed ID: 33586974
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biocontrol of
    Abbas A; Yli-Mattila T
    Toxins (Basel); 2022 Apr; 14(5):. PubMed ID: 35622546
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Antifungal Activity of Quinofumelin against
    Xiu Q; Bi L; Xu H; Li T; Zhou Z; Li Z; Wang J; Duan Y; Zhou M
    Toxins (Basel); 2021 May; 13(5):. PubMed ID: 34066154
    [No Abstract]   [Full Text] [Related]  

  • 50. Characterization of Fusarium graminearum isolates recovered from wheat samples from Argentina by Fourier transform infrared spectroscopy: Phenotypic diversity and detection of specific markers of aggressiveness.
    Fígoli CB; Rojo R; Gasoni LA; Kikot G; Leguizamón M; Gamba RR; Bosch A; Alconada TM
    Int J Food Microbiol; 2017 Mar; 244():36-42. PubMed ID: 28064121
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The impact of chitosan on the early metabolomic response of wheat to infection by Fusarium graminearum.
    Deshaies M; Lamari N; Ng CKY; Ward P; Doohan FM
    BMC Plant Biol; 2022 Feb; 22(1):73. PubMed ID: 35183130
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surfactin inhibits Fusarium graminearum by accumulating intracellular ROS and inducing apoptosis mechanisms.
    Liang C; Xi-Xi X; Yun-Xiang S; Qiu-Hua X; Yang-Yong L; Yuan-Sen H; Ke B
    World J Microbiol Biotechnol; 2023 Oct; 39(12):340. PubMed ID: 37821760
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mycosubtilin Produced by
    Yu C; Liu X; Zhang X; Zhang M; Gu Y; Ali Q; Mohamed MSR; Xu J; Shi J; Gao X; Wu H; Gu Q
    Toxins (Basel); 2021 Nov; 13(11):. PubMed ID: 34822575
    [No Abstract]   [Full Text] [Related]  

  • 54. Thymol-based submicron emulsions exhibit antifungal activity against Fusarium graminearum and inhibit Fusarium head blight in wheat.
    Gill TA; Li J; Saenger M; Scofield SR
    J Appl Microbiol; 2016 Oct; 121(4):1103-16. PubMed ID: 27253757
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biogenic Synthesis of Silver Nanoparticles using
    Datkhile KD; Durgawale PP; Patil SR
    Pharm Nanotechnol; 2023; 11(2):180-193. PubMed ID: 36503464
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Endophytic Bacteria
    Monowar T; Rahman MS; Bhore SJ; Sathasivam KV
    Pharmaceutics; 2021 Apr; 13(4):. PubMed ID: 33917798
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Green Synthesis of Silver Nanoparticles by C
    Sudarsan S; Kumar Shankar M; Kumar Belagal Motatis A; Shankar S; Krishnappa D; Mohan CD; Rangappa KS; Gupta VK; Siddaiah CN
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33578957
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Green Synthesis of Silver Nanoparticles of
    Palei NN; Krishnan SN; Jayaraman R; Reddy SH; Balaji A; Samanta MK; Mohanta BC
    Recent Pat Nanotechnol; 2023; 17(3):270-280. PubMed ID: 35619324
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Potential of Pseudomonas chlororaphis subsp. aurantiaca Strain Pcho10 as a Biocontrol Agent Against Fusarium graminearum.
    Hu W; Gao Q; Hamada MS; Dawood DH; Zheng J; Chen Y; Ma Z
    Phytopathology; 2014 Dec; 104(12):1289-97. PubMed ID: 24941327
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts.
    Wang L; Wu Y; Xie J; Wu S; Wu Z
    Mater Sci Eng C Mater Biol Appl; 2018 May; 86():1-8. PubMed ID: 29525084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.