These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 32012816)
21. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part II. Models with more than two parameters. Hamdaoui O; Naffrechoux E J Hazard Mater; 2007 Aug; 147(1-2):401-11. PubMed ID: 17289259 [TBL] [Abstract][Full Text] [Related]
22. Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics. Malik PK J Hazard Mater; 2004 Sep; 113(1-3):81-8. PubMed ID: 15363517 [TBL] [Abstract][Full Text] [Related]
23. Adsorptive removal of phenol from contaminated water and wastewater by activated carbon, almond, and walnut shells charcoal. Pajooheshfar SP; Saeedi M Water Environ Res; 2009 Jun; 81(6):641-8. PubMed ID: 19601430 [TBL] [Abstract][Full Text] [Related]
24. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. Boudrahem F; Aissani-Benissad F; Aït-Amar H J Environ Manage; 2009 Jul; 90(10):3031-9. PubMed ID: 19447542 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of carbons derived from Gingelly oil cake for the removal of lead(II) from aqueous solutions. Nagashanmugam KB; Srinivasan K J Environ Sci Eng; 2010 Oct; 52(4):349-60. PubMed ID: 22312806 [TBL] [Abstract][Full Text] [Related]
26. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. Altenor S; Carene B; Emmanuel E; Lambert J; Ehrhardt JJ; Gaspard S J Hazard Mater; 2009 Jun; 165(1-3):1029-39. PubMed ID: 19118948 [TBL] [Abstract][Full Text] [Related]
27. Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-metylphenoxyacetic acid onto activated carbons derived from various lignocellulosic materials. Doczekalska B; Kuśmierek K; Świątkowski A; Bartkowiak M J Environ Sci Health B; 2018 May; 53(5):290-297. PubMed ID: 29336683 [TBL] [Abstract][Full Text] [Related]
28. Removal of Pb(II) by adsorption onto Chinese walnut shell activated carbon. Yi ZJ; Yao J; Kuang YF; Chen HL; Wang F; Yuan ZM Water Sci Technol; 2015; 72(6):983-9. PubMed ID: 26360759 [TBL] [Abstract][Full Text] [Related]
29. Rapid and efficient removal of Pb(II) from aqueous solutions using biomass-derived activated carbon with humic acid in-situ modification. Guo Z; Zhang J; Kang Y; Liu H Ecotoxicol Environ Saf; 2017 Nov; 145():442-448. PubMed ID: 28778043 [TBL] [Abstract][Full Text] [Related]
30. Phenol removal onto novel activated carbons made from lignocellulosic precursors: influence of surface properties. Nabais JM; Gomes JA; Suhas ; Carrott PJ; Laginhas C; Roman S J Hazard Mater; 2009 Aug; 167(1-3):904-10. PubMed ID: 19233559 [TBL] [Abstract][Full Text] [Related]
31. Renewable adsorbents from the solid residue of sewage sludge hydrothermal liquefaction for wastewater treatment. Saner A; Carvalho PN; Catalano J; Anastasakis K Sci Total Environ; 2022 Sep; 838(Pt 3):156418. PubMed ID: 35660599 [TBL] [Abstract][Full Text] [Related]
32. Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization. Peláez-Cid AA; Herrera-González AM; Salazar-Villanueva M; Bautista-Hernández A J Environ Manage; 2016 Oct; 181():269-278. PubMed ID: 27372249 [TBL] [Abstract][Full Text] [Related]
33. Efficient removal of phenol compounds from water environment using Ziziphus leaves adsorbent. Al Bsoul A; Hailat M; Abdelhay A; Tawalbeh M; Al-Othman A; Al-Kharabsheh IN; Al-Taani AA Sci Total Environ; 2021 Mar; 761():143229. PubMed ID: 33160673 [TBL] [Abstract][Full Text] [Related]
34. Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull. Thinakaran N; Baskaralingam P; Pulikesi M; Panneerselvam P; Sivanesan S J Hazard Mater; 2008 Mar; 151(2-3):316-22. PubMed ID: 17689864 [TBL] [Abstract][Full Text] [Related]
35. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics. Amin NK J Hazard Mater; 2009 Jun; 165(1-3):52-62. PubMed ID: 18986765 [TBL] [Abstract][Full Text] [Related]
36. Studies on adsorption of phenol from wastewater by agricultural waste. Girish CR; Ramachandramurty V J Environ Sci Eng; 2013 Jul; 55(3):275-82. PubMed ID: 25509945 [TBL] [Abstract][Full Text] [Related]
37. Dataset on adsorption of phenol onto activated carbons: Equilibrium, kinetics and mechanism of adsorption. Hernández-Barreto DF; Giraldo L; Moreno-Piraján JC Data Brief; 2020 Oct; 32():106312. PubMed ID: 32995400 [TBL] [Abstract][Full Text] [Related]
38. Removal of Heavy Metals by Adsorption onto Activated Carbon Derived from Pine Cones of Pinus roxburghii. Saif MJ; Zia KM; Fazal-ur-Rehman ; Usman M; Hussain AI; Chatha SA Water Environ Res; 2015 Apr; 87(4):291-7. PubMed ID: 26462072 [TBL] [Abstract][Full Text] [Related]
39. Equilibrium adsorption study of the adsorptive removal of Cd Wang W; Liu Y; Liu X; Deng B; Lu S; Zhang Y; Bi B; Ren Z Environ Sci Pollut Res Int; 2018 Sep; 25(25):25538-25550. PubMed ID: 29959734 [TBL] [Abstract][Full Text] [Related]
40. Removal of phenol by powdered activated carbon prepared from coal gasification tar residue. Wang XL; Shen J; Niu YX; Wang YG; Liu G; Sheng QT Environ Technol; 2018 Mar; 39(6):694-701. PubMed ID: 28326997 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]