These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32012874)

  • 1. Depth Image-Based Deep Learning of Grasp Planning for Textureless Planar-Faced Objects in Vision-Guided Robotic Bin-Picking.
    Jiang P; Ishihara Y; Sugiyama N; Oaki J; Tokura S; Sugahara A; Ogawa A
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32012874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning Suction Graspability Considering Grasp Quality and Robot Reachability for Bin-Picking.
    Jiang P; Oaki J; Ishihara Y; Ooga J; Han H; Sugahara A; Tokura S; Eto H; Komoda K; Ogawa A
    Front Neurorobot; 2022; 16():806898. PubMed ID: 35401137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bin-Picking for Planar Objects Based on a Deep Learning Network: A Case Study of USB Packs.
    Le TT; Lin CY
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31430924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CEPB dataset: a photorealistic dataset to foster the research on bin picking in cluttered environments.
    Tripicchio P; D'Avella S; Avizzano CA
    Front Robot AI; 2024; 11():1222465. PubMed ID: 38817888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Point Pair Feature-Based Pose Estimation with Multiple Edge Appearance Models (PPF-MEAM) for Robotic Bin Picking.
    Liu D; Arai S; Miao J; Kinugawa J; Wang Z; Kosuge K
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30126220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Affordance-Based Grasping Point Detection Using Graph Convolutional Networks for Industrial Bin-Picking Applications.
    Iriondo A; Lazkano E; Ansuategi A
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filtering Organized 3D Point Clouds for Bin Picking Applications.
    Franaszek M; Rachakonda P; Saidi KS
    Appl Sci (Basel); 2024; 14(3):. PubMed ID: 38566838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast and precise 6D pose estimation of textureless objects using the point cloud and gray image.
    Pan W; Zhu F; Hao Y; Zhang L
    Appl Opt; 2018 Oct; 57(28):8154-8165. PubMed ID: 30461764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data-Driven Object Pose Estimation in a Practical Bin-Picking Application.
    Kozák V; Sushkov R; Kulich M; Přeučil L
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulation Planning for Object Re-Orientation Based on Semantic Segmentation Keypoint Detection.
    Wong CC; Yeh LY; Liu CC; Tsai CY; Aoyama H
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attention Based Visual Analysis for Fast Grasp Planning With a Multi-Fingered Robotic Hand.
    Deng Z; Gao G; Frintrop S; Sun F; Zhang C; Zhang J
    Front Neurorobot; 2019; 13():60. PubMed ID: 31417391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 6D Pose Estimation for Robotic Bin-Picking Using Point-Pair Features with Curvature (Cur-PPF).
    Cui X; Yu M; Wu L; Wu S
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robot Intelligent Grasp of Unknown Objects Based on Multi-Sensor Information.
    Ji SQ; Huang MB; Huang HP
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30986985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A neural learning approach for simultaneous object detection and grasp detection in cluttered scenes.
    Zhang Y; Xie L; Li Y; Li Y
    Front Comput Neurosci; 2023; 17():1110889. PubMed ID: 36890968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Keypoint-Based Robotic Grasp Detection Scheme in Multi-Object Scenes.
    Li T; Wang F; Ru C; Jiang Y; Li J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning the signatures of the human grasp using a scalable tactile glove.
    Sundaram S; Kellnhofer P; Li Y; Zhu JY; Torralba A; Matusik W
    Nature; 2019 May; 569(7758):698-702. PubMed ID: 31142856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Robotic Pushing and Grasping Method Based on Vision Transformer and Convolution.
    Yu S; Zhai DH; Xia Y
    IEEE Trans Neural Netw Learn Syst; 2023 Mar; PP():. PubMed ID: 37028295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autonomous detection and sorting of litter using deep learning and soft robotic grippers.
    Almanzor E; Anvo NR; Thuruthel TG; Iida F
    Front Robot AI; 2022; 9():1064853. PubMed ID: 36530497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel hand-eye calibration method of picking robot based on TOF camera.
    Zhang X; Yao M; Cheng Q; Liang G; Fan F
    Front Plant Sci; 2022; 13():1099033. PubMed ID: 36733593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.