These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 32013043)

  • 21. Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation.
    Ye L; Sui K; Liu Y; Zhang M; Liu QH
    Opt Express; 2018 Jun; 26(12):15935-15947. PubMed ID: 30114847
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pulsed Four-Wave Mixing at Telecom Wavelengths in Si
    Demongodin P; El Dirani H; Kerdilès S; Lhuillier J; Wood T; Sciancalepore C; Monat C
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770412
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular Spectrum Capture by Tuning the Chemical Potential of Graphene.
    Cheng Y; Yang J; Lu Q; Tang H; Huang M
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27240372
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale.
    Bian Y; Gong Q
    Nanoscale; 2015 Mar; 7(10):4415-22. PubMed ID: 25648863
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Terahertz surface plasmons in optically pumped graphene structures.
    Dubinov AA; Aleshkin VY; Mitin V; Otsuji T; Ryzhii V
    J Phys Condens Matter; 2011 Apr; 23(14):145302. PubMed ID: 21441654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced Spectral Broadening of Femtosecond Optical Pulses in Silicon Nanowires Integrated with 2D Graphene Oxide Films.
    Zhang Y; Wu J; Yang Y; Qu Y; Jia L; Jia B; Moss DJ
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630223
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mid-infrared subwavelength modulator based on grating-assisted coupling of a hybrid plasmonic waveguide mode to a graphene plasmon.
    Kim Y; Kwon MS
    Nanoscale; 2017 Nov; 9(44):17429-17438. PubMed ID: 29104985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns.
    Alonso-González P; Nikitin AY; Golmar F; Centeno A; Pesquera A; Vélez S; Chen J; Navickaite G; Koppens F; Zurutuza A; Casanova F; Hueso LE; Hillenbrand R
    Science; 2014 Jun; 344(6190):1369-73. PubMed ID: 24855026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Review on Graphene-Based Light Emitting Functional Devices.
    Junaid M; Md Khir MH; Witjaksono G; Ullah Z; Tansu N; Saheed MSM; Kumar P; Hing Wah L; Magsi SA; Siddiqui MA
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32937975
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene surface plasmons at the near-infrared optical regime.
    Zhang Q; Li X; Hossain MM; Xue Y; Zhang J; Song J; Liu J; Turner MD; Fan S; Bao Q; Gu M
    Sci Rep; 2014 Oct; 4():6559. PubMed ID: 25297570
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Topologically protected plasmon mode with ultrastrong field localization in a graphene-based metasurface.
    Lu Y; Chen Y
    Opt Express; 2021 Feb; 29(4):6188-6198. PubMed ID: 33726145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intensity dependences of the nonlinear optical excitation of plasmons in graphene.
    Constant TJ; Hornett SM; Chang DE; Hendry E
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2090):. PubMed ID: 28219998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of graphene TE surface plasmons in the terahertz regime.
    He XY; Tao J; Meng B
    Nanotechnology; 2013 Aug; 24(34):345203. PubMed ID: 23912303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy.
    Alonso-González P; Nikitin AY; Gao Y; Woessner A; Lundeberg MB; Principi A; Forcellini N; Yan W; Vélez S; Huber AJ; Watanabe K; Taniguchi T; Casanova F; Hueso LE; Polini M; Hone J; Koppens FH; Hillenbrand R
    Nat Nanotechnol; 2017 Jan; 12(1):31-35. PubMed ID: 27775727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene.
    D'Apuzzo F; Piacenti AR; Giorgianni F; Autore M; Guidi MC; Marcelli A; Schade U; Ito Y; Chen M; Lupi S
    Nat Commun; 2017 Mar; 8():14885. PubMed ID: 28345584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmon Waveguiding in Nanowires.
    Wei H; Pan D; Zhang S; Li Z; Li Q; Liu N; Wang W; Xu H
    Chem Rev; 2018 Mar; 118(6):2882-2926. PubMed ID: 29446301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid graphene plasmonic waveguide modulators.
    Ansell D; Radko IP; Han Z; Rodriguez FJ; Bozhevolnyi SI; Grigorenko AN
    Nat Commun; 2015 Nov; 6():8846. PubMed ID: 26554944
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Double-resonant enhancement of third-harmonic generation in graphene nanostructures.
    You JW; You J; Weismann M; Panoiu NC
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2090):. PubMed ID: 28220005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-dimensional gap plasmons for enhanced light-graphene interactions.
    Kim Y; Yu S; Park N
    Sci Rep; 2017 Feb; 7():43333. PubMed ID: 28240230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-loss silicon core fibre platform for mid-infrared nonlinear photonics.
    Ren H; Shen L; Runge AFJ; Hawkins TW; Ballato J; Gibson U; Peacock AC
    Light Sci Appl; 2019; 8():105. PubMed ID: 31798844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.