These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 32013065)
1. Molecular Mechanisms of the Anti-Cancer Effects of Isothiocyanates from Cruciferous Vegetables in Bladder Cancer. Mastuo T; Miyata Y; Yuno T; Mukae Y; Otsubo A; Mitsunari K; Ohba K; Sakai H Molecules; 2020 Jan; 25(3):. PubMed ID: 32013065 [TBL] [Abstract][Full Text] [Related]
2. Protective Effect of Isothiocyanates from Cruciferous Vegetables on Breast Cancer: Epidemiological and Preclinical Perspectives. Ngo SNT; Williams DB Anticancer Agents Med Chem; 2021; 21(11):1413-1430. PubMed ID: 32972351 [TBL] [Abstract][Full Text] [Related]
3. Associations of dietary isothiocyanate exposure from cruciferous vegetable consumption with recurrence and progression of non-muscle-invasive bladder cancer: findings from the Be-Well Study. Wang Z; Kwan ML; Haque R; Goniewicz M; Pratt R; Lee VS; Roh JM; Ergas IJ; Cannavale KL; Loo RK; Aaronson DS; Quesenberry CP; Zhang Y; Ambrosone CB; Kushi LH; Tang L Am J Clin Nutr; 2023 Jun; 117(6):1110-1120. PubMed ID: 37044209 [TBL] [Abstract][Full Text] [Related]
4. Urinary excretion of total isothiocyanates from cruciferous vegetables shows high dose-response relationship and may be a useful biomarker for isothiocyanate exposure. Kristensen M; Krogholm KS; Frederiksen H; Bügel SH; Rasmussen SE Eur J Nutr; 2007 Oct; 46(7):377-82. PubMed ID: 17717627 [TBL] [Abstract][Full Text] [Related]
5. Targeting Colorectal Cancer Proliferation, Stemness and Metastatic Potential Using Brassicaceae Extracts Enriched in Isothiocyanates: A 3D Cell Model-Based Study. Pereira LP; Silva P; Duarte M; Rodrigues L; Duarte CM; Albuquerque C; Serra AT Nutrients; 2017 Apr; 9(4):. PubMed ID: 28394276 [TBL] [Abstract][Full Text] [Related]
6. Relationship between Chemical Structure and Antimicrobial Activities of Isothiocyanates from Cruciferous Vegetables against Oral Pathogens. Ko MO; Kim MB; Lim SB J Microbiol Biotechnol; 2016 Dec; 26(12):2036-2042. PubMed ID: 27586534 [TBL] [Abstract][Full Text] [Related]
7. Cruciferous Vegetables as Antioxidative, Chemopreventive and Antineoplasic Functional Foods: Preclinical and Clinical Evidences of Sulforaphane Against Prostate Cancers. Ferreira PMP; Rodrigues LARL; de Alencar Carnib LP; de Lima Sousa PV; Nolasco Lugo LM; Nunes NMF; do Nascimento Silva J; da Silva Araûjo L; de Macêdo Gonçalves Frota K Curr Pharm Des; 2018; 24(40):4779-4793. PubMed ID: 30652644 [TBL] [Abstract][Full Text] [Related]
8. The impact of cruciferous vegetable isothiocyanates on histone acetylation and histone phosphorylation in bladder cancer. Abbaoui B; Telu KH; Lucas CR; Thomas-Ahner JM; Schwartz SJ; Clinton SK; Freitas MA; Mortazavi A J Proteomics; 2017 Mar; 156():94-103. PubMed ID: 28132875 [TBL] [Abstract][Full Text] [Related]
9. Sulforaphane for the chemoprevention of bladder cancer: molecular mechanism targeted approach. Leone A; Diorio G; Sexton W; Schell M; Alexandrow M; Fahey JW; Kumar NB Oncotarget; 2017 May; 8(21):35412-35424. PubMed ID: 28423681 [TBL] [Abstract][Full Text] [Related]
10. Involvement of toxicity as an early event in urinary bladder carcinogenesis induced by phenethyl isothiocyanate, benzyl isothiocyanate, and analogues in F344 rats. Akagi K; Sano M; Ogawa K; Hirose M; Goshima H; Shirai T Toxicol Pathol; 2003; 31(4):388-96. PubMed ID: 12851104 [TBL] [Abstract][Full Text] [Related]
11. Nanodelivery of natural isothiocyanates as a cancer therapeutic. Wang Q; Bao Y Free Radic Biol Med; 2021 May; 167():125-140. PubMed ID: 33711418 [TBL] [Abstract][Full Text] [Related]
13. Molecular targets of isothiocyanates in cancer: recent advances. Gupta P; Kim B; Kim SH; Srivastava SK Mol Nutr Food Res; 2014 Aug; 58(8):1685-707. PubMed ID: 24510468 [TBL] [Abstract][Full Text] [Related]
14. The Role of Cruciferous Vegetables and Isothiocyanates for Lung Cancer Prevention: Current Status, Challenges, and Future Research Directions. Zhang Z; Bergan R; Shannon J; Slatore CG; Bobe G; Takata Y Mol Nutr Food Res; 2018 Sep; 62(18):e1700936. PubMed ID: 29663679 [TBL] [Abstract][Full Text] [Related]
15. Chemoprevention of cancer by isothiocyanates, modifiers of carcinogen metabolism. Hecht SS J Nutr; 1999 Mar; 129(3):768S-774S. PubMed ID: 10082787 [TBL] [Abstract][Full Text] [Related]
16. The antioxidant properties of organosulfur compounds (sulforaphane). de Figueiredo SM; Binda NS; Nogueira-Machado JA; Vieira-Filho SA; Caligiorne RB Recent Pat Endocr Metab Immune Drug Discov; 2015; 9(1):24-39. PubMed ID: 25944116 [TBL] [Abstract][Full Text] [Related]
17. Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms. Gupta P; Wright SE; Kim SH; Srivastava SK Biochim Biophys Acta; 2014 Dec; 1846(2):405-24. PubMed ID: 25152445 [TBL] [Abstract][Full Text] [Related]
18. The principal urinary metabolites of dietary isothiocyanates, N-acetylcysteine conjugates, elicit the same anti-proliferative response as their parent compounds in human bladder cancer cells. Tang L; Li G; Song L; Zhang Y Anticancer Drugs; 2006 Mar; 17(3):297-305. PubMed ID: 16520658 [TBL] [Abstract][Full Text] [Related]
19. Antiplatelet and anticancer isothiocyanates in Japanese domestic horseradish, wasabi. Morimitsu Y; Hayashi K; Nakagawa Y; Horio F; Uchida K; Osawa T Biofactors; 2000; 13(1-4):271-6. PubMed ID: 11237193 [TBL] [Abstract][Full Text] [Related]
20. Glucosinolate and isothiocyanate intakes are inversely associated with breast cancer risk: a case-control study in China. Zhang NQ; Ho SC; Mo XF; Lin FY; Huang WQ; Luo H; Huang J; Zhang CX Br J Nutr; 2018 Apr; 119(8):957-964. PubMed ID: 29644960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]