BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32013071)

  • 1. Jet Cutting Technique for the Production of Chitosan Aerogel Microparticles Loaded with Vancomycin.
    López-Iglesias C; Barros J; Ardao I; Gurikov P; Monteiro FJ; Smirnova I; Alvarez-Lorenzo C; García-González CA
    Polymers (Basel); 2020 Jan; 12(2):. PubMed ID: 32013071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vancomycin-loaded chitosan aerogel particles for chronic wound applications.
    López-Iglesias C; Barros J; Ardao I; Monteiro FJ; Alvarez-Lorenzo C; Gómez-Amoza JL; García-González CA
    Carbohydr Polym; 2019 Jan; 204():223-231. PubMed ID: 30366534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drying Using Supercritical Fluid Technology as a Potential Method for Preparation of Chitosan Aerogel Microparticles.
    Obaidat RM; Tashtoush BM; Bayan MF; Al Bustami RT; Alnaief M
    AAPS PharmSciTech; 2015 Dec; 16(6):1235-44. PubMed ID: 25761387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong, Machinable, and Insulating Chitosan-Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths.
    Guerrero-Alburquerque N; Zhao S; Adilien N; Koebel MM; Lattuada M; Malfait WJ
    ACS Appl Mater Interfaces; 2020 May; 12(19):22037-22049. PubMed ID: 32302092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alginate-based hybrid aerogel microparticles for mucosal drug delivery.
    Gonçalves VS; Gurikov P; Poejo J; Matias AA; Heinrich S; Duarte CM; Smirnova I
    Eur J Pharm Biopharm; 2016 Oct; 107():160-70. PubMed ID: 27393563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Carrageenan Aerogel Microparticles as a Potential Drug Carrier.
    Obaidat RM; Alnaief M; Mashaqbeh H
    AAPS PharmSciTech; 2018 Jul; 19(5):2226-2236. PubMed ID: 29736886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polysaccharide-Based Aerogel Bead Production via Jet Cutting Method.
    Preibisch I; Niemeyer P; Yusufoglu Y; Gurikov P; Milow B; Smirnova I
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30044454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, drying process and medical application of polysaccharide-based aerogels.
    El-Naggar ME; Othman SI; Allam AA; Morsy OM
    Int J Biol Macromol; 2020 Feb; 145():1115-1128. PubMed ID: 31678101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel alginate-chitosan aerogel fibres for potential wound healing applications.
    Batista MP; Gonçalves VSS; Gaspar FB; Nogueira ID; Matias AA; Gurikov P
    Int J Biol Macromol; 2020 Aug; 156():773-782. PubMed ID: 32302631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transparent, Aldehyde-Free Chitosan Aerogel.
    Takeshita S; Zhao S; Malfait WJ
    Carbohydr Polym; 2021 Jan; 251():117089. PubMed ID: 33142630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications.
    Mori M; Almeida PV; Cola M; Anselmi G; Mäkilä E; Correia A; Salonen J; Hirvonen J; Caramella C; Santos HA
    Eur J Pharm Biopharm; 2014 Nov; 88(3):635-42. PubMed ID: 25305585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vancomycin-loaded methylcellulose aerogel scaffolds for advanced bone tissue engineering.
    Iglesias-Mejuto A; Magariños B; Ferreira-Gonçalves T; Starbird-Pérez R; Álvarez-Lorenzo C; Reis CP; Ardao I; García-González CA
    Carbohydr Polym; 2024 Jan; 324():121536. PubMed ID: 37985110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of Nanofibrous Structure in Biopolymer Aerogel during Supercritical CO
    Takeshita S; Sadeghpour A; Malfait WJ; Konishi A; Otake K; Yoda S
    Biomacromolecules; 2019 May; 20(5):2051-2057. PubMed ID: 30908038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sterile and Dual-Porous Aerogels Scaffolds Obtained through a Multistep Supercritical CO₂-Based Approach.
    Santos-Rosales V; Ardao I; Alvarez-Lorenzo C; Ribeiro N; Oliveira AL; García-González CA
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30823685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hollow Particles Obtained by Prilling and Supercritical Drying as a Potential Conformable Dressing for Chronic Wounds.
    Sellitto MR; Amante C; Aquino RP; Russo P; Rodríguez-Dorado R; Neagu M; García-González CA; Adami R; Del Gaudio P
    Gels; 2023 Jun; 9(6):. PubMed ID: 37367162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polysaccharide-Based Aerogel Production for Biomedical Applications: A Comparative Review.
    Guastaferro M; Reverchon E; Baldino L
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33810582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release Kinetics of Dexamethasone Phosphate from Porous Chitosan: Comparison of Aerogels and Cryogels.
    Chartier C; Buwalda S; Ilochonwu BC; Van Den Berghe H; Bethry A; Vermonden T; Viola M; Nottelet B; Budtova T
    Biomacromolecules; 2023 Oct; 24(10):4494-4501. PubMed ID: 36958008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impregnation of passion fruit bagasse extract in alginate aerogel microparticles.
    Viganó J; Meirelles AAD; Náthia-Neves G; Baseggio AM; Cunha RL; Maróstica Junior MR; Meireles MAA; Gurikov P; Smirnova I; Martínez J
    Int J Biol Macromol; 2020 Jul; 155():1060-1068. PubMed ID: 31712155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agarose, Alginate and Chitosan Nanostructured Aerogels for Pharmaceutical Applications: A Short Review.
    Guastaferro M; Reverchon E; Baldino L
    Front Bioeng Biotechnol; 2021; 9():688477. PubMed ID: 34055766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cornstarch aerogels with thymol, citronellol, carvacrol, and eugenol prepared by supercritical CO
    Milovanovic S; Markovic D; Jankovic-Castvan I; Lukic I
    Carbohydr Polym; 2024 May; 331():121874. PubMed ID: 38388060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.