BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 32013131)

  • 1. Targeting CD38-Expressing Multiple Myeloma and Burkitt Lymphoma Cells In Vitro with Nanobody-Based Chimeric Antigen Receptors (Nb-CARs).
    Hambach J; Riecken K; Cichutek S; Schütze K; Albrecht B; Petry K; Röckendorf JL; Baum N; Kröger N; Hansen T; Schuch G; Haag F; Adam G; Fehse B; Bannas P; Koch-Nolte F
    Cells; 2020 Jan; 9(2):. PubMed ID: 32013131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-Multiple Myeloma Activity of Nanobody-Based Anti-CD38 Chimeric Antigen Receptor T Cells.
    An N; Hou YN; Zhang QX; Li T; Zhang QL; Fang C; Chen H; Lee HC; Zhao YJ; Du X
    Mol Pharm; 2018 Oct; 15(10):4577-4588. PubMed ID: 30185037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting multiple myeloma with nanobody-based heavy chain antibodies, bispecific killer cell engagers, chimeric antigen receptors, and nanobody-displaying AAV vectors.
    Hambach J; Mann AM; Bannas P; Koch-Nolte F
    Front Immunol; 2022; 13():1005800. PubMed ID: 36405759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preclinical Evaluation of Invariant Natural Killer T Cells Modified with CD38 or BCMA Chimeric Antigen Receptors for Multiple Myeloma.
    Poels R; Drent E; Lameris R; Katsarou A; Themeli M; van der Vliet HJ; de Gruijl TD; van de Donk NWCJ; Mutis T
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33499253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD38-Specific Biparatopic Heavy Chain Antibodies Display Potent Complement-Dependent Cytotoxicity Against Multiple Myeloma Cells.
    Schütze K; Petry K; Hambach J; Schuster N; Fumey W; Schriewer L; Röckendorf J; Menzel S; Albrecht B; Haag F; Stortelers C; Bannas P; Koch-Nolte F
    Front Immunol; 2018; 9():2553. PubMed ID: 30524421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Half-Life Extended Nanobody-Based CD38-Specific Bispecific Killercell Engagers Induce Killing of Multiple Myeloma Cells.
    Hambach J; Fumey W; Stähler T; Gebhardt AJ; Adam G; Weisel K; Koch-Nolte F; Bannas P
    Front Immunol; 2022; 13():838406. PubMed ID: 35651607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma.
    Drent E; Groen RW; Noort WA; Themeli M; Lammerts van Bueren JJ; Parren PW; Kuball J; Sebestyen Z; Yuan H; de Bruijn J; van de Donk NW; Martens AC; Lokhorst HM; Mutis T
    Haematologica; 2016 May; 101(5):616-25. PubMed ID: 26858358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanobody-based CD38-specific heavy chain antibodies induce killing of multiple myeloma and other hematological malignancies.
    Schriewer L; Schütze K; Petry K; Hambach J; Fumey W; Koenigsdorf J; Baum N; Menzel S; Rissiek B; Riecken K; Fehse B; Röckendorf JL; Schmid J; Albrecht B; Pinnschmidt H; Ayuk F; Kröger N; Binder M; Schuch G; Hansen T; Haag F; Adam G; Koch-Nolte F; Bannas P
    Theranostics; 2020; 10(6):2645-2658. PubMed ID: 32194826
    [No Abstract]   [Full Text] [Related]  

  • 9. Challenges in αCD38-chimeric antigen receptor (CAR)-expressing natural killer (NK) cell-based immunotherapy in multiple myeloma: Harnessing the CD38dim phenotype of cytokine-stimulated NK cells as a strategy to prevent fratricide.
    Karvouni M; Vidal-Manrique M; Susek KH; Hussain A; Gilljam M; Zhang Y; Gray JD; Lund J; Kaufmann G; Ljunggren HG; Ji H; Lundqvist A; Wagner AK; Guo W; Alici E
    Cytotherapy; 2023 Jul; 25(7):763-772. PubMed ID: 37055320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Rational Strategy for Reducing On-Target Off-Tumor Effects of CD38-Chimeric Antigen Receptors by Affinity Optimization.
    Drent E; Themeli M; Poels R; de Jong-Korlaar R; Yuan H; de Bruijn J; Martens ACM; Zweegman S; van de Donk NWCJ; Groen RWJ; Lokhorst HM; Mutis T
    Mol Ther; 2017 Aug; 25(8):1946-1958. PubMed ID: 28506593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing the Power of CAR-NK Cells: A Promising Off-the-Shelf Therapeutic Strategy for CD38-Positive Malignancies.
    Asadi M; Kiani R; Razban V; Faraji SN; Ahmadi A; Fallahi J; Ramezani A; Erfani N
    Iran J Immunol; 2023 Dec; 20(4):410-426. PubMed ID: 38102941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicotinamide-Expanded Allogeneic Natural Killer Cells with CD38 Deletion, Expressing an Enhanced CD38 Chimeric Antigen Receptor, Target Multiple Myeloma Cells.
    Edri A; Ben-Haim N; Hailu A; Brycman N; Berhani-Zipori O; Rifman J; Cohen S; Yackoubov D; Rosenberg M; Simantov R; Teru H; Kurata K; Anderson KC; Hendel A; Pato A; Geffen Y
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CD38
    Sarkar S; Chauhan SKS; Daly J; Natoni A; Fairfield H; Henderson R; Nolan E; Swan D; Hu J; Reagan MR; O'Dwyer M
    Cancer Immunol Immunother; 2020 Mar; 69(3):421-434. PubMed ID: 31919623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD38 knockout natural killer cells expressing an affinity optimized CD38 chimeric antigen receptor successfully target acute myeloid leukemia with reduced effector cell fratricide.
    Gurney M; Stikvoort A; Nolan E; Kirkham-McCarthy L; Khoruzhenko S; Shivakumar R; Zweegman S; Van de Donk NWCJ; Mutis T; Szegezdi E; Sarkar S; O'Dwyer M
    Haematologica; 2022 Feb; 107(2):437-445. PubMed ID: 33375774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse CD38-Specific Heavy Chain Antibodies Inhibit CD38 GDPR-Cyclase Activity and Mediate Cytotoxicity Against Tumor Cells.
    Baum N; Eggers M; Koenigsdorf J; Menzel S; Hambach J; Staehler T; Fliegert R; Kulow F; Adam G; Haag F; Bannas P; Koch-Nolte F
    Front Immunol; 2021; 12():703574. PubMed ID: 34539634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-affinity CD16 integration into a CRISPR/Cas9-edited CD38 locus augments CD38-directed antitumor activity of primary human natural killer cells.
    Clara JA; Levy ER; Reger R; Barisic S; Chen L; Cherkasova E; Chakraborty M; Allan DSJ; Childs R
    J Immunother Cancer; 2022 Feb; 10(2):. PubMed ID: 35135865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanobodies effectively modulate the enzymatic activity of CD38 and allow specific imaging of CD38
    Fumey W; Koenigsdorf J; Kunick V; Menzel S; Schütze K; Unger M; Schriewer L; Haag F; Adam G; Oberle A; Binder M; Fliegert R; Guse A; Zhao YJ; Cheung Lee H; Malavasi F; Goldbaum F; van Hegelsom R; Stortelers C; Bannas P; Koch-Nolte F
    Sci Rep; 2017 Oct; 7(1):14289. PubMed ID: 29084989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD38-specific nanobodies allow
    Pape LJ; Hambach J; Gebhardt AJ; Rissiek B; Stähler T; Tode N; Khan C; Weisel K; Adam G; Koch-Nolte F; Bannas P
    Front Immunol; 2022; 13():1010270. PubMed ID: 36389758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perspectives for the Development of CD38-Specific Heavy Chain Antibodies as Therapeutics for Multiple Myeloma.
    Bannas P; Koch-Nolte F
    Front Immunol; 2018; 9():2559. PubMed ID: 30459772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity.
    Naeimi Kararoudi M; Nagai Y; Elmas E; de Souza Fernandes Pereira M; Ali SA; Imus PH; Wethington D; Borrello IM; Lee DA; Ghiaur G
    Blood; 2020 Nov; 136(21):2416-2427. PubMed ID: 32603414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.