These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 32013141)

  • 1. Multiple Fano Resonances with Tunable Electromagnetic Properties in Graphene Plasmonic Metamolecules.
    Zhou H; Su S; Qiu W; Zhao Z; Lin Z; Qiu P; Kan Q
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32013141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings.
    Liu SD; Yang Z; Liu RP; Li XY
    ACS Nano; 2012 Jul; 6(7):6260-71. PubMed ID: 22680404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances.
    Sheikholeslami SN; GarcĂ­a-Etxarri A; Dionne JA
    Nano Lett; 2011 Sep; 11(9):3927-34. PubMed ID: 21819059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical modulation of fano resonance in plasmonic nanostructures using graphene.
    Emani NK; Chung TF; Kildishev AV; Shalaev VM; Chen YP; Boltasseva A
    Nano Lett; 2014 Jan; 14(1):78-82. PubMed ID: 24303876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule.
    Osley EJ; Biris CG; Thompson PG; Jahromi RR; Warburton PA; Panoiu NC
    Phys Rev Lett; 2013 Feb; 110(8):087402. PubMed ID: 23473201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable Nanosensor Based on Fano Resonances Created by Changing the Deviation Angle of the Metal Core in a Plasmonic Cavity.
    Wang Q; Ouyang Z; Sun Y; Lin M; Liu Q; Zheng G; Fan J
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29596341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybridization in Three Dimensions: A Novel Route toward Plasmonic Metamolecules.
    Zilio P; Malerba M; Toma A; Zaccaria RP; Jacassi A; De Angelis F
    Nano Lett; 2015 Aug; 15(8):5200-7. PubMed ID: 26214122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fano-Resonance in Hybrid Metal-Graphene Metamaterial and Its Application as Mid-Infrared Plasmonic Sensor.
    Zhang J; Hong Q; Zou J; He Y; Yuan X; Zhu Z; Qin S
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32143457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures.
    Zhang J; Zayats A
    Opt Express; 2013 Apr; 21(7):8426-36. PubMed ID: 23571932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly controllable double Fano resonances in plasmonic metasurfaces.
    Liu Z; Ye J
    Nanoscale; 2016 Oct; 8(40):17665-17674. PubMed ID: 27714114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linearly Tunable Fano Resonance Modes in a Plasmonic Nanostructure with a Waveguide Loaded with Two Rectangular Cavities Coupled by a Circular Cavity.
    Wang Q; Ouyang Z; Sun Y; Lin M; Liu Q
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31052439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanorod orientation dependence of tunable Fano resonance in plasmonic nanorod heptamers.
    Tamma VA; Cui Y; Zhou J; Park W
    Nanoscale; 2013 Feb; 5(4):1592-602. PubMed ID: 23329115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromagnetic field coupling characteristics in graphene plasmonic oligomers: from isolated to collective modes.
    Ren J; Qiu W; Chen H; Qiu P; Lin Z; Wang JX; Kan Q; Pan JQ
    Phys Chem Chem Phys; 2017 Jun; 19(22):14671-14679. PubMed ID: 28537636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multipolar Plasmonic Resonances of Aluminum Nanoantenna Tuned by Graphene.
    Yan Z; Zhu Q; Lu X; Du W; Pu X; Hu T; Yu L; Huang Z; Cai P; Tang C
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33451028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double Fano resonances in hybrid disk/rod artificial plasmonic molecules based on dipole-quadrupole coupling.
    Chen Z; Zhang S; Chen Y; Liu Y; Li P; Wang Z; Zhu X; Bi K; Duan H
    Nanoscale; 2020 May; 12(17):9776-9785. PubMed ID: 32324182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene Multiple Fano Resonances Based on Asymmetric Hybrid Metamaterial.
    Yan Z; Zhang Z; Du W; Wu W; Hu T; Yu Z; Gu P; Chen J; Tang C
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33276469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon resonance hybridization in self-assembled copper nanoparticle clusters: efficient and precise localization of surface plasmon resonance (LSPR) sensing based on Fano resonances.
    Ahmadivand A; Pala N
    Appl Spectrosc; 2015; 69(2):277-86. PubMed ID: 25587712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconfigurable sensor and nanoantenna by graphene-tuned Fano resonance.
    Wang CL; Wang YQ; Hu H; Liu DJ; Gao DL; Gao L
    Opt Express; 2019 Nov; 27(24):35925-35934. PubMed ID: 31878757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Higher order Fano graphene metamaterials for nanoscale optical sensing.
    Guo X; Hu H; Zhu X; Yang X; Dai Q
    Nanoscale; 2017 Oct; 9(39):14998-15004. PubMed ID: 28956583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple Fano resonances with flexible tunablity based on symmetry-breaking resonators.
    Ren XB; Ren K; Zhang Y; Ming CG; Han Q
    Beilstein J Nanotechnol; 2019; 10():2459-2467. PubMed ID: 31921524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.